Adaptive synchronization of Rossler and Chen chaotic systems

被引:27
作者
Li, Z [1 ]
Han, CZ
机构
[1] Xidian Univ, Dept Automat Control Engn, Xian 710071, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
来源
CHINESE PHYSICS | 2002年 / 11卷 / 07期
关键词
chaotic systems; chaos control; adaptive synchronization; Rossler system; Chen attractor;
D O I
10.1088/1009-1963/11/7/304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A novel adaptive synchronization method is proposed for two identical Rossler and Chen systems with uncertain parameters. Based on Lyapunov stability theory, we derive an adaptive controller without the knowledge of the system parameters, which can make the states of two identical Rossler and Chen systems globally asymptotically synchronized. Especially, when some unknown uncertain parameters are positive, we can make the controller more simple and, besides, the controller is independent of those positive uncertain parameters. All results are proved using a well-known Lyapunov stability theorem. Numerical simulations are given to validate the proposed synchronization approach.
引用
收藏
页码:666 / 669
页数:4
相关论文
共 17 条
[1]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[2]   Synchronization and control of chaotic systems [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 1999, 10 (09) :1571-1575
[3]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[4]   Synchronization of a class of strictly different chaotic oscillators [J].
Femat, R ;
Alvarez-Ramirez, J .
PHYSICS LETTERS A, 1997, 236 (04) :307-313
[5]   Neural nerwork based robust adaptive synchronization of a chaotic system [J].
Guan, XP ;
Tang, YG ;
Fan, ZP ;
Wang, YQ .
ACTA PHYSICA SINICA, 2001, 50 (11) :2112-2115
[6]   Synchronization on using parametric adaptive control algorithm [J].
He, MF ;
Mu, YM ;
Zhao, LZ .
ACTA PHYSICA SINICA, 2000, 49 (05) :830-832
[7]  
Li Z, 2002, CHINESE PHYS, V11, P9, DOI 10.1088/1009-1963/11/1/303
[8]  
Li Z, 2001, CHINESE PHYS, V10, P494, DOI 10.1088/1009-1963/10/6/306
[9]   Adaptive synchronization of chaotic systems and its application to secure communications [J].
Liao, TL ;
Tsai, SH .
CHAOS SOLITONS & FRACTALS, 2000, 11 (09) :1387-1396
[10]   Synchronization for a class of chaotic systems based upon observer theory [J].
Liu, F ;
Ren, Y ;
Shan, XM ;
Qiu, ZL .
CHINESE PHYSICS, 2001, 10 (07) :606-610