Ubiquitination and proteasomal degradation the BRCA1 tumor suppressor is regulated during cell cycle progression

被引:101
作者
Choudhury, AD [1 ]
XuO, H [1 ]
Baer, R [1 ]
机构
[1] Columbia Univ, Inst Canc Genet, Dept Pathol, New York, NY 10032 USA
关键词
D O I
10.1074/jbc.M403646200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The BRCA1 tumor suppressor and the BARD1 protein form a stable heterodimeric complex that can catalyze the formation of polyubiquitin chains. Expression of BRCA1 fluctuates in a cell cycle-dependent manner, such that low steady-state levels of BRCA1 gene products are found in resting cells and early G(1) cycling cells and high levels in S and G(2) phase cells. Although transcriptional activation of the BRCA1 gene can account for induction of BRCA1 expression at the G(1)/S transition, the mechanisms by which BRCA1 is down-regulated during cell cycle progression have not been addressed. Here we show that the steady-state levels of BRCA1 protein remain elevated throughout mitosis but begin to decline at the M/G(1) transition. This decline in BRCA1 levels coincides with the appearance of proteasome-sensitive ubiquitin conjugates of BRCA1 at the onset of G(1). Formation of these conjugates occurs throughout G(1) and S, but not in cells arrested in prometaphase by nocodazole. The proteasome-sensitive ubiquitin conjugates of BRCA1 appear to be distinct from BRCA1 autoubiquitination products and are probably catalyzed by the action of other cellular E3 ligases. Interestingly, co-expression of BARD1 inhibits the formation of these conjugates, suggesting that BARD1 serves to stabilize BRCA1 expression in part by reducing proteasome-sensitive ubiquitination of BRCA1 polypeptides. In summary, these data indicate that the cell cycle-dependent pattern of BRCA1 expression is determined in part by ubiquitin-dependent proteasomal degradation.
引用
收藏
页码:33909 / 33918
页数:10
相关论文
共 56 条
[1]   BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair [J].
Abbott, DW ;
Thompson, ME ;
Robinson-Benion, C ;
Tomlinson, G ;
Jensen, RA ;
Holt, JT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (26) :18808-18812
[2]   The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity [J].
Baer, R ;
Ludwig, T .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (01) :86-91
[3]   Regulation of BRCA1 by protein degradation [J].
Blagosklonny, MV ;
An, WG ;
Melillo, G ;
Nguyen, P ;
Trepel, JB ;
Neckers, LM .
ONCOGENE, 1999, 18 (47) :6460-6468
[4]   Binding and recognition in the assembly of an active BRCA1 /BARD1 ubiquitin-ligase complex [J].
Brzovic, PS ;
Keeffe, JR ;
Nishikawa, H ;
Miyamoto, K ;
Fox, D ;
Fukuda, M ;
Ohta, T ;
Klevit, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (10) :5646-5651
[5]   Structure of a BRCA1-BARD1 heterodimeric RING-RING complex [J].
Brzovic, PS ;
Rajagopal, P ;
Hoyt, DW ;
King, MC ;
Klevit, RE .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (10) :833-837
[6]   Autoubiquitination of the BRCA1-BARD1 RING ubiquitin ligase [J].
Chen, A ;
Kleiman, FE ;
Manley, JL ;
Ouchi, T ;
Pan, ZQ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (24) :22085-22092
[7]  
Chen YM, 1996, CANCER RES, V56, P3168
[8]   Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1 [J].
Fang, GW ;
Yu, HT ;
Kirschner, MW .
MOLECULAR CELL, 1998, 2 (02) :163-171
[9]   Ubiquitination and proteasome mediated degradation of polo-like kinase [J].
Ferris, DK ;
Maloid, SC ;
Li, CCH .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 252 (02) :340-344
[10]  
Gudas JM, 1996, CELL GROWTH DIFFER, V7, P717