Nanotube oxide coating on Ti-29Nb-13Ta-4.6Zr alloy prepared by self-organizing anodization

被引:94
作者
Tsuchiya, Hiroaki
Macak, Jan M.
Ghicov, Andrei
Tang, Yee Chin
Fujimoto, Shinji
Niinomi, Mitsuo
Noda, Toshiharu
Schmuki, Patrik
机构
[1] Univ Erlangen Nurnberg, Inst Surface Sci & Corros, LKO, Dept Mat Sci, D-91058 Erlangen, Germany
[2] Osaka Univ, Grad Sch Engn, Dept Mat Sci & Proc, Osaka 5650871, Japan
[3] Tohoku Univ, Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan
[4] Daido Steel Co Ltd, R&D Lab, Minami Ku, Nagoya, Aichi 4578545, Japan
关键词
biomedical alloy; self-organization; porous layer; nanotubes; anodic oxidation;
D O I
10.1016/j.electacta.2006.03.087
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The present paper reports on the formation of self-organized nanotube oxide layers on beta-type Ti-29Nb-13Ta-4.6Zr alloy in (NH4)(2)SO4 containing a small amount of NH4F. Highly ordered nanotube layers can be formed on the alloy under a wide range of applied potentials. Initiation and self-organization of pores is a potential and time dependent process. Layers removed from the electrolyte in an early growth state consist of two different morphologies-an outer nanoporous structure and an underneath ordered nanotube layer. For extended anodization, the outer nanoporous layer is completely dissolved. Within subsequent growth stages multi-scale ordering of the nanotube arrays with two discrete geometries can be observed. The different stages and morphologies depend significantly on the anodizing potentials. Clearly - compared with anodic tubes on pure Ti - a much broader range of nanotube geometries i.e. "structural flexibility" can be achieved with the Ti-29Nb-13Ta-4.6Zr alloy. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:94 / 101
页数:8
相关论文
共 35 条
[1]   Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes [J].
Beranek, R ;
Hildebrand, H ;
Schmuki, P .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (03) :B12-B14
[2]   Titanium oxide nanotubes prepared in phosphate electrolytes [J].
Ghicov, A ;
Tsuchiya, H ;
Macak, JM ;
Schmuki, P .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (05) :505-509
[3]   Titanium oxide nanotube arrays prepared by anodic oxidation [J].
Gong, D ;
Grimes, CA ;
Varghese, OK ;
Hu, WC ;
Singh, RS ;
Chen, Z ;
Dickey, EC .
JOURNAL OF MATERIALS RESEARCH, 2001, 16 (12) :3331-3334
[4]   Design and mechanical properties of new β type titanium alloys for implant materials [J].
Kuroda, D ;
Niinomi, M ;
Morinaga, M ;
Kato, Y ;
Yashiro, T .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1998, 243 (1-2) :244-249
[5]   Zirconium oxide nanotubes synthesized via direct electrochemical anodization [J].
Lee, WJ ;
Smyrl, WH .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (03) :B7-B9
[6]   THE ROLE OF HYDRATED SILICA, TITANIA, AND ALUMINA IN INDUCING APATITE ON IMPLANTS [J].
LI, PJ ;
OHTSUKI, C ;
KOKUBO, T ;
NAKANISHI, K ;
SOGA, N ;
DEGROOT, K .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1994, 28 (01) :7-15
[7]   Self-organized nanotubular oxide layers on Ti-6A1-7Nb and Ti-6A1-4V formed by anodization in NH4F solutions [J].
Macak, JM ;
Tsuchiya, H ;
Taveira, L ;
Ghicov, A ;
Schmuki, P .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2005, 75A (04) :928-933
[8]   Smooth anodic TiO2 nanotubes [J].
Macak, JM ;
Tsuchiya, H ;
Taveira, L ;
Aldabergerova, S ;
Schmuki, P .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (45) :7463-7465
[9]   Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes [J].
Macak, JM ;
Sirotna, K ;
Schmuki, P .
ELECTROCHIMICA ACTA, 2005, 50 (18) :3679-3684
[10]   High-aspect-ratio TiO2 nanotubes by anodization of titanium [J].
Macák, JM ;
Tsuchiya, H ;
Schmuki, P .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (14) :2100-2102