Anisotropic spatial sampling designs for urban pollution

被引:23
作者
Arbia, G [1 ]
Lafratta, G [1 ]
机构
[1] Univ G dAnnunzio, Fac Econ, Dept Sci, I-65127 Pescara, Italy
关键词
anisotropic processes; environmental sampling; multidimensional scaling; nonparametric regression; optimal networks design; optimal spatial sampling strategies; spatial prediction;
D O I
10.1111/1467-9876.00265
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Isotropic processes form an inadequate basis in modelling many spatially distributed data. In particular environmental phenomena often have strong anisotropic spatial variation, especially when the regions monitored are very large. We extend a recently proposed optimal sampling strategy by assuming a spatial anisotropic random field as the basis for the data generator mechanism. The procedure is based on a geographical space transformation indicated by Sampson and Guttorp. We discuss the optimal design and we develop a sequential procedure for selecting a network of monitoring stations in environmental surveys. Some data on sulphur dioxide pollution in Padua (Italy) are analysed to illustrate the method.
引用
收藏
页码:223 / 234
页数:12
相关论文
共 18 条
[1]  
ARBIA G, 1994, 946 U PAD DEP STAT S
[2]  
ARBIA G, 1994, QUAD STAT MAT APPL S, V16, P81
[3]  
ARBIA G, 1997, J AGR BIOL ENVIR ST, V2, P451, DOI DOI 10.2307/1400514
[4]  
Cassel C.M., 1977, FDN INFERENCE SURVEY
[5]  
Chaudhuri A., 1988, UNIFIED THEORY STRAT
[6]  
Cox T. F., 1994, MULTIDIMENSIONAL SCA
[7]  
Cressie N, 1993, STAT SPATIAL DATA
[8]  
GUTTORP P, 1992, STAT ENV EARTH SCI, P39
[9]  
Hardle W., 1990, Applied Nonparametric Regression
[10]  
Hedayat A., 1991, DESIGN INFERENCE FIN