On the problem of optimal cutting

被引:6
作者
Bucur, D
Buttazzo, G
Varchon, N
机构
[1] Univ Franche Comte, CNRS, Dept Math, F-25030 Besancon, France
[2] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
optimal cut; membrane; variation of a crack;
D O I
10.1137/S1052623401387118
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence of an optimal cutting in a membrane satisfying the following assumption: it has to connect two given points in order to leave the membrane the strongest possible. We prove the existence of a solution for this problem in a rather general setting, and we present some open questions related to the regularity of the optimum or to possible extensions for plates in the elasticity framework.
引用
收藏
页码:157 / 167
页数:11
相关论文
共 21 条
[1]   Shape optimization by the homogenization method [J].
Allaire, G ;
Bonnetier, E ;
Francfort, G ;
Jouve, F .
NUMERISCHE MATHEMATIK, 1997, 76 (01) :27-68
[2]   EXISTENCE THEORY FOR A NEW CLASS OF VARIATIONAL-PROBLEMS [J].
AMBROSIO, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (04) :291-322
[3]  
[Anonymous], 2000, ANN SCUOLA NORM-SCI
[4]  
[Anonymous], THEORY FINE PROPERTI
[5]  
Attouch H., 1984, Applicable Mathematics Series
[6]  
BAERNSTEIN A, 1987, LECT NOTES MATH, V1275, P23
[7]   Stability of the Neumann problem for variations of the boundary [J].
Bucur, D ;
Varchon, N .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (05) :371-374
[8]   Shape optimisation problems governed by nonlinear state equations [J].
Bucur, D ;
Trebeschi, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :945-963
[9]  
BUCUR D, 2000, 0014 U FRANCH COMT
[10]   Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets. [J].
Chambolle, A ;
Doveri, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (5-6) :811-840