Nuclear receptor-DNA binding specificity: A COMBINE and Free-Wilson QSAR analysis

被引:40
作者
Tomic, S
Nilsson, L
Wade, RC
机构
[1] European Mol Biol Lab, D-69117 Heidelberg, Germany
[2] Rudjer Boskovic Inst, HR-10001 Zagreb, Croatia
[3] Karolinska Inst, Novum, Ctr Struct Biochem, S-14157 Huddinge, Sweden
关键词
D O I
10.1021/jm9911175
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Specific binding of transcription factors to DNA is crucial for gene regulation. We derived models for the binding specificity of transcription factors of the nuclear receptor family to DNA using two QSAR methods: a Free-Wilson-like method and COMparative BINding Energy (COMBINE) analysis. The analysis is based on experimental data for the interaction of 20 mutant glucocorticoid receptor DNA-binding domains with 16 different response elements in a total of 320 complexes (Zilliacus, J.; Wright, A. P.; Carlstedt-Duke, J.; Nilsson, L.; Gustafsson, J. A. Proteins 1995, 21, 57-67). The predictive abilities of the models obtained by the two methods are similar. The COMBINE analysis indicates that the most important properties for determining binding specificity for this dataset are the changes upon binding of the solvation free energies of the bases that are mutated in the dataset and the electrostatic interactions of the mutated nucleotides with certain charged amino acids. Further important descriptors are the changes of solvation free energy and surface area of the side chain of the mutated residue. It is clear, however, that there are additional features important for the specificity of binding that are not included in the models, such as differences in interfacial hydration of the complexes.
引用
收藏
页码:1780 / 1792
页数:13
相关论文
共 52 条
[1]   GENERATING OPTIMAL LINEAR PLS ESTIMATIONS (GOLPE) - AN ADVANCED CHEMOMETRIC TOOL FOR HANDLING 3D-QSAR PROBLEMS [J].
BARONI, M ;
COSTANTINO, G ;
CRUCIANI, G ;
RIGANELLI, D ;
VALIGI, R ;
CLEMENTI, S .
QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS, 1993, 12 (01) :9-20
[2]   GENE-REGULATION BY STEROID-HORMONES [J].
BEATO, M .
CELL, 1989, 56 (03) :335-344
[3]   ATOMIC CHARGES DERIVED FROM SEMIEMPIRICAL METHODS [J].
BESLER, BH ;
MERZ, KM ;
KOLLMAN, PA .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (04) :431-439
[4]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[5]  
Brown L M, 1998, Pac Symp Biocomput, P339
[6]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[7]   COMPARATIVE MOLECULAR-FIELD ANALYSIS (COMFA) .1. EFFECT OF SHAPE ON BINDING OF STEROIDS TO CARRIER PROTEINS [J].
CRAMER, RD ;
PATTERSON, DE ;
BUNCE, JD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1988, 110 (18) :5959-5967
[8]  
Creighton TE, 1993, PROTEINS STRUCTURES
[9]   THE DEVELOPMENT AND USE OF QUANTUM-MECHANICAL MOLECULAR-MODELS .76. AM1 - A NEW GENERAL-PURPOSE QUANTUM-MECHANICAL MOLECULAR-MODEL [J].
DEWAR, MJS ;
ZOEBISCH, EG ;
HEALY, EF ;
STEWART, JJP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (13) :3902-3909
[10]   Structural and dynamic differences of the estrogen receptor DNA binding domain, binding as a dimer and as a monomer to DNA: molecular dynamics simulation studies [J].
Eriksson, MAL ;
Nilsson, L .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 1999, 28 (02) :102-111