Solving two-level variational inequality

被引:22
作者
Kalashnikov, VV [1 ]
Kalashnikova, NI [1 ]
机构
[1] CENT ECON & MATH INST,DEPT EXPT ECON,MOSCOW 117418,RUSSIA
关键词
variational inequality; parametrization; pseudo-monotone mapping; penalty function algorithm;
D O I
10.1007/BF00121270
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
An approach to solving a mathematical program with variational inequality or nonlinear complementarity constraints is presented. It consists in a variational re-formulation of the optimization criterion and looking for a solution of thus obtained variational inequality among the points satisfying the initial variational constraints.
引用
收藏
页码:289 / 294
页数:6
相关论文
共 7 条
[1]  
Eaves B., 1971, Math. Program, V1, P68, DOI [10.1007/BF01584073, DOI 10.1007/BF01584073]
[2]  
HARKER PT, 1991, INFORM DECIS TECHNOL, V17, P41
[3]   FINITE-DIMENSIONAL VARIATIONAL INEQUALITY AND NONLINEAR COMPLEMENTARITY-PROBLEMS - A SURVEY OF THEORY, ALGORITHMS AND APPLICATIONS [J].
HARKER, PT ;
PANG, JS .
MATHEMATICAL PROGRAMMING, 1990, 48 (02) :161-220
[4]   COMPLEMENTARITY PROBLEMS OVER CONES WITH MONOTONE AND PSEUDOMONOTONE MAPS [J].
KARAMARDIAN, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1976, 18 (04) :445-454
[5]   ON OPTIMIZATION PROBLEMS WITH VARIATIONAL INEQUALITY CONSTRAINTS [J].
OUTRATA, JV .
SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (02) :340-357
[6]  
Rockafellar R. T., 1972, Princeton Mathematical Series
[7]   A DESCENT ALGORITHM FOR SOLVING MONOTONE VARIATIONAL-INEQUALITIES AND MONOTONE COMPLEMENTARITY-PROBLEMS [J].
SMITH, MJ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1984, 44 (03) :485-496