Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles

被引:289
作者
Hetrick, Evan M. [1 ]
Shin, Jae Ho [1 ]
Paul, Heather S. [1 ]
Schoenfisch, Mark H. [1 ]
机构
[1] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Nitric oxide; Nanoparticle; Biofilm; Antimicrobial; Cytotoxicity; POVIDONE-IODINE; ANAPHYLACTIC SHOCK; HYDROGEN-PEROXIDE; RESISTANCE; INFECTION; ANTIMICROBIALS; CHLORHEXIDINE; MICROBIOLOGY; ASSAY;
D O I
10.1016/j.biomaterials.2009.01.052
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The ability of nitric oxide (NO)-releasing silica nanoparticles to kill biofilm-based microbial cells is reported. Biofilms of Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans were formed in vitro and exposed to NO-releasing silica nanoparticles. Replicative viability experiments revealed that >= 99% of cells from each type of biofilm were killed via NO release, with the greatest efficacy (>= 99.999% killing) against gram-negative P. aeruginosa and E. coli biofilms. Cytotoxicity testing demonstrated that the highest dose of NO-releasing silica nanoparticles inhibited fibroblast proliferation to a lesser extent than clinical concentrations of currently administered antiseptics (e.g., chlorhexidine) with proven wound-healing benefits. This study demonstrates the promise of employing nanoparticles for delivering an antimicrobial agent to microbial biofilms (C) 2009 Elsevier Ltd. All rights reserved
引用
收藏
页码:2782 / 2789
页数:8
相关论文
共 63 条
[1]   Anaphylactic shock after application of chlorhexidine to unbroken skin [J].
Autegarden, JE ;
Pecquet, C ;
Huet, S ;
Bayrou, O ;
Leynadier, F .
CONTACT DERMATITIS, 1999, 40 (04) :215-215
[2]   Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding [J].
Bagwe, RP ;
Hilliard, LR ;
Tan, WH .
LANGMUIR, 2006, 22 (09) :4357-4362
[3]   Dilute povidone-iodine solutions inhibit human skin fibroblast growth [J].
Balin, AK ;
Pratt, L .
DERMATOLOGIC SURGERY, 2002, 28 (03) :210-214
[4]   Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa [J].
Barraud, Nicolas ;
Hassett, Daniel J. ;
Hwang, Sung-Hei ;
Rice, Scott A. ;
Kjelleberg, Staffan ;
Webb, Jeremy S. .
JOURNAL OF BACTERIOLOGY, 2006, 188 (21) :7344-7353
[5]  
Beckman Joseph S., 1995, Methods (Orlando), V7, P35, DOI 10.1006/meth.1995.1005
[6]   Why chronic wounds will not heal: a novel hypothesis [J].
Bjarnsholt, Thomas ;
Kirketerp-Moller, Klaus ;
Jensen, Peter Ostrup ;
Madsen, Kit G. ;
Phipps, Richard ;
Krogfelt, Karen ;
Hoiby, Niels ;
Givskov, Michael .
WOUND REPAIR AND REGENERATION, 2008, 16 (01) :2-10
[7]   Wound microbiology and associated approaches to wound management [J].
Bowler, PG ;
Duerden, BI ;
Armstrong, DG .
CLINICAL MICROBIOLOGY REVIEWS, 2001, 14 (02) :244-+
[8]   The MBEC assay system: Multiple equivalent biofilms for antibiotic and biocide susceptibility testing [J].
Ceri, H ;
Olson, M ;
Morck, D ;
Storey, D ;
Read, R ;
Buret, A ;
Olson, B .
MICROBIAL GROWTH IN BIOFILMS, PT B: SPECIAL ENVIRONMENTS AND PHYSICOCHEMICAL ASPECTS, 2001, 337 :377-385
[9]   The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms [J].
Ceri, H ;
Olson, ME ;
Stremick, C ;
Read, RR ;
Morck, D ;
Buret, A .
JOURNAL OF CLINICAL MICROBIOLOGY, 1999, 37 (06) :1771-1776
[10]   Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo [J].
Davis, Stephen C. ;
Ricotti, Carlos ;
Cazzaniga, Alex ;
Welsh, Esperanza ;
Eaglstein, William H. ;
Mertz, Patricia M. .
WOUND REPAIR AND REGENERATION, 2008, 16 (01) :23-29