The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins

被引:252
作者
Chini, Andrea [1 ]
Fonseca, Sandra [1 ]
Chico, Jose M. [1 ]
Fernandez-Calvo, Patricia [1 ]
Solano, Roberto [1 ]
机构
[1] CSIC, Ctr Nacl Biotecnol, Dept Genet Mol Plantas, Madrid 28049, Spain
关键词
Jasmonate; JAZ; ZIM domain; Jas motif; homo- and heteromerization; MYC2; JASMONATE-REGULATED DEFENSE; METHYL JASMONATE; CRYSTAL-STRUCTURE; PHYTOTOXIN CORONATINE; DNA COMPLEX; COI1; GENE; RESPONSES; FAMILY; RECOGNITION;
D O I
10.1111/j.1365-313X.2009.03852.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
P>Discovery of the jasmonate ZIM-domain (JAZ) repressors defined the core jasmonate (JA) signalling module as COI1-JAZ-MYC2, and allowed a full view of the JA signalling pathway from hormone perception to transcriptional reprogramming. JAZ proteins are repressors of MYC2 and targets of SCFCOI1, which is the likely jasmonate receptor. Upon hormone perception, JAZ repressors are degraded by the proteasome releasing MYC2 and allowing the activation of JA responses. All members of the JAZ family share two conserved domains, the Jas motif, required for JAZ interactions with MYC2 and COI1, and the ZIM domain, the function of which is so far unknown. Here, we show that the ZIM domain acts as a protein-protein interaction domain mediating homo- and heteromeric interactions between JAZ proteins. These JAZ-JAZ interactions are independent of the presence of the hormone. The observation that only a few members of the JAZ family form homo- and heteromers may suggest the relevance of these proteins in the regulation of JA signalling. Interestingly, the JAZ3 Delta Jas protein interacts with several JAZ proteins, providing new clues to understanding the dominant JA insensitivity promoted by truncated JAZ Delta Jas proteins. We also provide evidence that the Jas motif mediates the hormone-dependent interaction between Arabidopsis JAZ3 and COI1, and further confirm that the Jas motif is required and sufficient for Arabidopsis JAZ3-MYC2 interaction. Finally, we show that interaction with MYC2 is a common feature of the JAZ family, as most JAZ proteins can bind MYC2 in pull-down and yeast two-hybrid assays.
引用
收藏
页码:77 / 87
页数:11
相关论文
共 47 条
[1]   Convergent energy and stress signaling [J].
Baena-Gonzalez, Elena ;
Sheen, Jen .
TRENDS IN PLANT SCIENCE, 2008, 13 (09) :474-482
[2]   Jasmonate signalling network in Arabidopsis thaliana:: crucial regulatory nodes and new physiological scenarios [J].
Balbi, Virginia ;
Devoto, Alessandra .
NEW PHYTOLOGIST, 2008, 177 (02) :301-318
[3]   Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis [J].
Boter, M ;
Ruíz-Rivero, O ;
Abdeen, A ;
Prat, S .
GENES & DEVELOPMENT, 2004, 18 (13) :1577-1591
[4]   The crystal structure of an intact human Max-DNA complex: New insights into mechanisms of transcriptional control [J].
Brownlie, P ;
Ceska, TA ;
Lamers, M ;
Romier, C ;
Stier, G ;
Teo, H ;
Suck, D .
STRUCTURE, 1997, 5 (04) :509-520
[5]   New weapons and a rapid response against insect attack [J].
Browse, John ;
Howe, Gregg A. .
PLANT PHYSIOLOGY, 2008, 146 (03) :832-838
[6]   JAZ repressors set the rhythm in jasmonate signaling [J].
Chico, Jose M. ;
Chini, Andrea ;
Fonseca, Sandra ;
Solano, Roberto .
CURRENT OPINION IN PLANT BIOLOGY, 2008, 11 (05) :486-494
[7]   Motifs specific for the ADR1 NBS-LRR protein family in Arabidopsis are conserved among NBS-LRR sequences from both dicotyledonous and monocotyledonous plants [J].
Chini, A ;
Loake, GJ .
PLANTA, 2005, 221 (04) :597-601
[8]   The JAZ family of repressors is the missing link in jasmonate signalling [J].
Chini, Andrea ;
Fonseca, S. ;
Fernandez, G. ;
Adie, B. ;
Chico, J. M. ;
Lorenzo, O. ;
Garcia-Casado, G. ;
Lopez-Vidriero, I. ;
Lozano, F. M. ;
Ponce, M. R. ;
Micol, J. L. ;
Solano, R. .
NATURE, 2007, 448 (7154) :666-+
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions [J].
Devoto, A ;
Ellis, C ;
Magusin, A ;
Chang, HS ;
Chilcott, C ;
Zhu, T ;
Turner, JG .
PLANT MOLECULAR BIOLOGY, 2005, 58 (04) :497-513