Injectivity of the spherical mean operator on the conical manifolds of spheres

被引:4
作者
Agranovsky, ML [1 ]
Narayanan, EK [1 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-52100 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
spherical mean; wave equation; dependence domain;
D O I
10.1023/B:SIMJ.0000035826.91332.06
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a continuous function on R-n. If f has zero integral over every sphere intersecting a given subset A of R-n and A lies in no affine plane of dimension n - 2, then f vanishes identically. The condition on the dimension of A is sharp.
引用
收藏
页码:597 / 605
页数:9
相关论文
共 12 条
[1]  
[Anonymous], 1995, INTRO PARTIAL DIFFER
[2]   A RADON-TRANSFORM ON SPHERES THROUGH THE ORIGIN IN RN AND APPLICATIONS TO THE DARBOUX EQUATION [J].
CORMACK, AM ;
QUINTO, ET .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 260 (02) :575-581
[3]  
Courant R., 1962, Methods of mathematical physics, VII
[4]   INCOMING AND OUTGOING WAVES [J].
EPSTEIN, CL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 60 (03) :337-362
[5]   SPHERICAL MEANS IN ANNULAR REGIONS [J].
EPSTEIN, CL ;
KLEINER, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (03) :441-451
[6]   Holomorphic extensions from open families of circles [J].
Globevnik, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (05) :1921-1931
[7]   ZERO INTEGRALS ON CIRCLES AND CHARACTERIZATIONS OF HARMONIC AND ANALYTIC-FUNCTIONS [J].
GLOBEVNIK, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 317 (01) :313-330
[8]  
GLOBEVNIK J, DECOMPOSITION FUNCTI
[9]  
Helgason S., 1984, GROUPS GEOMETRIC ANA
[10]  
Hormander L., 1983, The Analysis of Linear Partial Differential Operators I