Environment-sensitive stabilisation of silver nanoparticles in aqueous solutions

被引:10
作者
Voets, Ilja K. [1 ]
de Keizer, Arie [1 ]
Frederik, Peter M. [2 ]
Jellema, Reint [2 ]
Stuart, Martien A. Cohen [1 ]
机构
[1] Wageningen Univ, Lab Phys Chem & Colloid Sci, NL-6703 HB Wageningen, Netherlands
[2] Univ Maastricht, EM Unit, NL-6229 ER Maastricht, Netherlands
关键词
Polymer; Micelle; Nanoparticle; Silver; Complex coacervation; Polyion complex; AMPHIPHILIC BLOCK-COPOLYMERS; QUANTUM DOTS; CONTRAST AGENTS; CORE MICELLES; MICELLIZATION; OXIDE; POLYMERIZATION; COMPLEXES; GROWTH;
D O I
10.1016/j.jcis.2009.07.065
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We describe the preparation and characterisation of inorganic-organic hybrid block copolymer silver nanoparticles via the preparation of spherical multi-responsive polymeric micelles of poly(N-methyl-2-vinyl pyridinium iodide)-block-poly(ethylene oxide), P2MVP(38)-b-PEO211, and poly(acrylic acid)-block-poly(isopropyl acrylamide), PAA(55)-b-PNIPAAm(88) in the presence of AgNO3. Hence, the P2MVP and PAA segments were employed to fix Ag+ ions within the micellar core (25 degrees C) or shell (60 degrees C), while the PEO segments ensured spontaneous reduction of Ag+ ions into metallic Ag, as well as colloidal stabilisation. Spherical and elongated composite core-shell(-corona) nanoparticles (CNPs) were formed containing several small, spherical silver nanoparticles within the micellar core or shell. As the co-assembly of the oppositely charged copolymers into micelles is electrostatically driven, the CNPs can be destabilised by, for example, addition of simple salts, i.e., the CNPs are stimuli responsive. CNP size and morphology control can be achieved via the preparation protocol. For example, heating to 60 degrees C, i.e., above the PNI-PAAm LCST, results in core-shell-corona CNPs with the Ag-NPs situated in the aggregate shell. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:317 / 324
页数:8
相关论文
共 34 条
[1]   Novel amphiphilic block copolymers by polymer reactions and their use for solubilization of metal salts and metal colloids [J].
Antonietti, M ;
Forster, S ;
Hartmann, J ;
Oestreich, S .
MACROMOLECULES, 1996, 29 (11) :3800-3806
[2]   Controlled clustering of superparamagnetic nanoparticles using block copolymers: Design of new contrast agents for magnetic resonance imaging [J].
Berret, JF ;
Schonbeck, N ;
Gazeau, F ;
El Kharrat, D ;
Sandre, O ;
Vacher, A ;
Airiau, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (05) :1755-1761
[3]   Hydrophilic block copolymer-directed growth of lanthanum hydroxide nanoparticles [J].
Bouyer, F ;
Sanson, N ;
Destarac, M ;
Gérardin, C .
NEW JOURNAL OF CHEMISTRY, 2006, 30 (03) :399-408
[4]   Role of double-hydrophilic block copolymers in the synthesis of lanthanum-based nanoparticles [J].
Bouyer, F ;
Gérardin, C ;
Fajula, F ;
Putaux, JL ;
Chopin, T .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2003, 217 (1-3) :179-184
[5]   Induced micellization by interaction of poly(2-vinylpyridine)-block-poly(ethylene oxide) with metal compounds.: Micelle characteristics and metal nanoparticle formation [J].
Bronstein, LH ;
Sidorov, SN ;
Valetsky, PM ;
Hartmann, J ;
Cölfen, H ;
Antonietti, M .
LANGMUIR, 1999, 15 (19) :6256-6262
[6]   Metalated diblock and triblock poly(ethylene oxide)-block-poly(4-vinylpyridine) copolymers:: Understanding of micelle and bulk structure [J].
Bronstein, LM ;
Sidorov, SN ;
Zhirov, V ;
Zhirov, D ;
Kabachii, YA ;
Kochev, SY ;
Valetsky, PM ;
Stein, B ;
Kiseleva, OI ;
Polyakov, SN ;
Shtykova, EV ;
Nikulina, EV ;
Svergun, DI ;
Khokhlov, AR .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (40) :18786-18798
[7]   Iron oxide MR contrast agents for molecular and cellular imaging [J].
Bulte, JWM ;
Kraitchman, DL .
NMR IN BIOMEDICINE, 2004, 17 (07) :484-499
[8]  
COHENSTUART MA, 1998, LANGMUIR, V14, P6846, DOI DOI 10.1021/LA980778M
[9]  
Cölfen H, 2001, MACROMOL RAPID COMM, V22, P219, DOI 10.1002/1521-3927(20010201)22:4<219::AID-MARC219>3.0.CO
[10]  
2-G