Human immunodeficiency virus type 1 proteinase resistance to symmetric cyclic urea inhibitor analogs

被引:43
作者
Nillroth, U
Vrang, L
Markgren, PO
Hulten, J
Hallberg, A
Danielson, UH
机构
[1] UNIV UPPSALA,DEPT BIOCHEM,BMC,S-75123 UPPSALA,SWEDEN
[2] UNIV UPPSALA,DEPT PHARMACEUT CHEM,S-75123 UPPSALA,SWEDEN
[3] MEDIVIR AB,S-14144 HUDDINGE,SWEDEN
关键词
D O I
10.1128/AAC.41.11.2383
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Resistant virus was isolated from virus propagated in cell culture in the presence of the human immunodeficiency virus type 1 (HIV-1) proteinase inhibitor DMP 323, Ro 31-8959, or A-75925. The proteinase gene of resistant virus was sequenced, and key mutations (G48V, V82A, I84V, L90M, and G48V/L90M) were introduced into clones used for the expression, purification, and further characterization of the enzyme. The mutant enzymes were all less active than the wild-type enzyme, as judged by k(cat) and k(cat)/K-m values. L90M had a lower K-m than the wild type, whereas the G48V/L90M double mutant had an increased K-m compared with that of the wild type, contributing to a 1.0-fold reduction in the k(cat)/K-m. Vitality values were used to show that the enzyme of the I84V mutant is the enzyme most resistant to the two cyclic urea inhibitors DMP 323 and AHA 008. Virus with the same mutation is also resistant, although the double mutation L10F/I84V confers even greater resistance. All of these mutants are more resistant to DMP 323 than to AHA 008. The resistance of the I84V mutant may be attributed to a loss of van der Waals interactions with the inhibitor, since the larger amino acid side chain involved in the interaction is replaced by a smaller side chain. This is supported by the lower level of resistance to AHA 008 that was observed. The phenyl groups of AHA 008 should protrude deeper into the S1 and S1' subsites than those of the smaller compound DMP 323, reducing the loss of interaction energy. These results reveal that small structural modifications of inhibitors that do not affect the inhibitory effect on wild-type virus can influence the inhibition of resistant strains. This is of importance for optimizing drugs with respect to their potency and resistance.
引用
收藏
页码:2383 / 2388
页数:6
相关论文
共 24 条
[1]  
ALA P, 1996, 11 INT C AIDS
[2]   OPTIMAL-DESIGN FOR MODEL DISCRIMINATION USING THE F-TEST WITH NON-LINEAR BIOCHEMICAL-MODELS - CRITERIA FOR CHOOSING THE NUMBER AND SPACING OF EXPERIMENTAL POINTS [J].
BARDSLEY, WG ;
MCGINLAY, PB ;
ROIG, MG .
JOURNAL OF THEORETICAL BIOLOGY, 1989, 139 (01) :85-102
[3]   HIV POPULATION-DYNAMICS IN-VIVO - IMPLICATIONS FOR GENETIC-VARIATION, PATHOGENESIS, AND THERAPY [J].
COFFIN, JM .
SCIENCE, 1995, 267 (5197) :483-489
[4]   IN-VIVO EMERGENCE OF HIV-1 VARIANTS RESISTANT TO MULTIPLE PROTEASE INHIBITORS [J].
CONDRA, JH ;
SCHLEIF, WA ;
BLAHY, OM ;
GABRYELSKI, LJ ;
GRAHAM, DJ ;
QUINTERO, JC ;
RHODES, A ;
ROBBINS, HL ;
ROTH, E ;
SHIVAPRAKASH, M ;
TITUS, D ;
YANG, T ;
TEPPLER, H ;
SQUIRES, KE ;
DEUTSCH, PJ ;
EMINI, EA .
NATURE, 1995, 374 (6522) :569-571
[5]   ANTIVIRAL PROPERTIES OF RO 31-8959, AN INHIBITOR OF HUMAN-IMMUNODEFICIENCY-VIRUS (HIV) PROTEINASE [J].
CRAIG, JC ;
DUNCAN, IB ;
HOCKLEY, D ;
GRIEF, C ;
ROBERTS, NA ;
MILLS, JS .
ANTIVIRAL RESEARCH, 1991, 16 (04) :295-305
[6]   HIV-1 protease inhibitors - A review for clinicians [J].
Deeks, SG ;
Smith, M ;
Holodniy, M ;
Kahn, JO .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1997, 277 (02) :145-153
[7]   Second locus involved in human immunodeficiency virus type 1 resistance to protease inhibitors [J].
Doyon, L ;
Croteau, G ;
Thibeault, D ;
Poulin, F ;
Pilote, L ;
Lamarre, D .
JOURNAL OF VIROLOGY, 1996, 70 (06) :3763-3769
[8]   KINETIC CHARACTERIZATION AND CROSS-RESISTANCE PATTERNS OF HIV-1 PROTEASE MUTANTS SELECTED UNDER DRUG PRESSURE [J].
GULNIK, SV ;
SUVOROV, LI ;
LIU, BS ;
YU, B ;
ANDERSON, B ;
MITSUYA, H ;
ERICKSON, JW .
BIOCHEMISTRY, 1995, 34 (29) :9282-9287
[9]   Improved cyclic urea inhibitors of the HIV-I protease: Synthesis, potency, resistance profile, human pharmacokinetics and X-ray crystal structure of DMP 450 [J].
Hodge, CN ;
Aldrich, PE ;
Bacheler, LT ;
Chang, CH ;
Eyermann, CJ ;
Garber, S ;
Grubb, M ;
Jackson, DA ;
Jadhav, PK ;
Korant, B ;
Lam, PYS ;
Maurin, MB ;
Meek, JL ;
Otto, MJ ;
Rayner, MM ;
Reid, C ;
Sharpe, TR ;
Shum, L ;
Winslow, DL ;
EricksonViitanen, S .
CHEMISTRY & BIOLOGY, 1996, 3 (04) :301-314
[10]   Cyclic HIV-1 protease inhibitors derived from mannitol: Synthesis, inhibitory potencies, and computational predictions of binding affinities [J].
Hulten, J ;
Bonham, NM ;
Nillroth, U ;
Hansson, T ;
Zuccarello, G ;
Bouzide, A ;
Aqvist, J ;
Classon, B ;
Danielson, UH ;
Karlen, A ;
Kvarnstrom, I ;
Samuelsson, B ;
Hallberg, A .
JOURNAL OF MEDICINAL CHEMISTRY, 1997, 40 (06) :885-897