The combination of asymmetrical flow field-flow fractionation (AsFlFFF) with the laser-induced breakdown detection (LIBD) is presented as a powerful tool for the determination of colloid size distribution at trace particle concentrations. Detection limits (DI) of 1, 4, and 20 mug/L have been determined for a mixture of polystyrene reference particles with 20, 50, and 100 nm in size, respectively. This corresponds to injected masses of 1, 4, and 20pg, which is lower than found in a previous study with the symmetrical FlFFF (SyFlFFF). The improvement is mainly due to the lower colloid background discharged from the AsFlFFF channel. The combined method of AsFlFFF-LIBD is then applied to the analysis of iron oxi/hydroxide colloids being considered as potential carriers for the radionuclide migration from a nuclear waste repository. Our LIBD arrangement is less sensitive for iron colloid detection as compared to reference polystyrene particles which results in a detection limit of similar to240 mug/L FeOOH for the AsFlFFF-LIBD analysis. This is superior to the detection via UV-Vis absorbance and comparable to ICP-MS detection. Size information (mean size 11-18 nm) for different iron oxi/hydroxide colloids supplied by the present method is comparable to that obtained by sequential ultrafiltration and dynamic light scattering. A combined on-line ICP-MS detection is used to gain insight into the colloid-borne main and trace elements. (C) 2004 Elsevier B.V. All rights reserved.