A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps

被引:95
作者
Bruzzone, L [1 ]
Cossu, R [1 ]
机构
[1] Univ Trent, Dept Informat & Commun Technol, I-38050 Trento, Italy
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2002年 / 40卷 / 09期
关键词
cascade classification; maximum-likelihood classifier; multiple classifier systems; multitemporal remote sensing images; partially unsupervised classification; radial basis function neural networks; updating land-cover maps;
D O I
10.1109/TGRS.2002.803794
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A system for a regular updating of land-cover maps is proposed that is based on the use of multitemporal remote sensing images. Such a system is able to address the updating problem under the realistic but critical constraint that, for the image to be classified (i.e., the most recent of the considered multitemporal dataset) no ground truth information is available. The system is composed of an ensemble of partially unsupervised classifiers integrated in a multiple-classifier architecture. Each classifier of the ensemble exhibits the following novel characteristics: 1) it is developed in the framework of the cascade-classification approach to exploit the temporal correlation existing between images acquired at different times. in the considered area; and 2) it is based on a partially unsupervised methodology capable of accomplishing the classification process under the aforementioned critical constraint. Both a parametric maximum-likelihood (NIL) classification approach and a nonparametric radial basis function (RBF) neural-network classification approach are used as basic methods for the development of partially unsupervised cascade classifiers. In addition, in order to generate an effective ensemble of classification algorithms, hybrid ML and RBF neural-network cascade classifiers are defined by exploiting the characteristics of the cascade-classification methodology. The results yielded by the different classifiers are combined by using standard unsupervised combination strategies. This allows the definition of a robust and accurate partially unsupervised classification system capable of analyzing a wide typology of remote sensing data (e.g., images acquired by passive sensors, synthetic aperture radar images, and multisensor and multisource data). Experimental results obtained on a real multitemporal and multisource dataset confirm the effectiveness of the proposed system.
引用
收藏
页码:1984 / 1996
页数:13
相关论文
共 20 条
[1]   Parallel consensual neural networks [J].
Benediktsson, JA ;
Sveinsson, JR ;
Ersoy, OK ;
Swain, PH .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (01) :54-64
[2]   CONSENSUS THEORETIC CLASSIFICATION METHODS [J].
BENEDIKTSSON, JA ;
SWAIN, PH .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1992, 22 (04) :688-704
[3]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[4]   A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images [J].
Bruzzone, L ;
Prieto, DF .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (02) :1179-1184
[5]   An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images [J].
Bruzzone, L ;
Serpico, SB .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (04) :858-867
[6]   Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images [J].
Bruzzone, L ;
Prieto, DF .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (02) :456-460
[7]   A neural-statistical approach to multitemporal and multisource remote-sensing image classification [J].
Bruzzone, L ;
Prieto, DF ;
Serpico, SB .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (03) :1350-1359
[8]  
BRUZZONE L, 2002, PATTERN RECOGNIT LET
[9]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[10]   Ensemble methods in machine learning [J].
Dietterich, TG .
MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 :1-15