Kinetic and pharmacological properties of cloned human equilibrative nucleoside transporters, ENT1 and ENT2, stably expressed in nucleoside transporter-deficient PK15 cells - ENT2 exhibits a low affinity for guanosine and cytidine but a high affinity for inosine

被引:259
作者
Ward, JL [1 ]
Sherali, A [1 ]
Mo, ZP [1 ]
Tse, CM [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Med, Div Gastroenterol, Baltimore, MD 21205 USA
关键词
D O I
10.1074/jbc.275.12.8375
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We stably transfected the cloned human equilibrative nucleoside transporters 1 and 2 (hENT1 and hENT2) into nucleoside transporter-deficient PK15NTD cells. Although hENT1 and hENT2 are predicted to be 50-kDa proteins, hENT1 runs as 40 kDa and hENT2 migrates as 50 and 47 kDa on SDS-polyacrylamide gel electrophoresis. Peptide N-glycosidase F and endoglycosidase H deglycosylate hENT1 to 37 kDa and hENT2 to 45 kDa, With hENT1 being more sensitive, there is a 7000-fold and 71-fold difference in sensitivity to nitrobenzylthioinosine (NBMPR) (IC50, 0.4 +/- 0.1 nM versus 2.8 +/- 0.3 mu M) and dipyridamole (IC50, 5.0 +/- 0.9 nM versus 356 +/- 13 nM), respectively. [H-3]NBMPR binds to ENT1 cells with a high affinity K-d of 0.377 +/- 0.098 nM, and each ENT1 cell has 34,000 transporters with a turnover number of 46 molecules/s for uridine, Although both transporters are broadly selective, hENT2 is a generally low affinity nucleoside transporter with 2.6-, 2.8-, 7.7-, and 19.3-fold lower affinity than hENT1 for thymidine, adenosine, cytidine, and guanosine, respectively. In contrast, the affinity of hENT2 for inosine is 4-fold higher than hENT1, The nucleobase hypoxanthine inhibits [H-3]uridine uptake by hENT2 but has minimal effect on hENT1, Taken together, these results suggest that hENT2 might be important in transporting adenosine and its metabolites (inosine and hypoxanthine) in tissues such as skeletal muscle where ENT2 is predominantly expressed.
引用
收藏
页码:8375 / 8381
页数:7
相关论文
共 27 条
[1]   HIGH-AFFINITY, EQUILIBRATIVE NUCLEOSIDE TRANSPORTER OF PIG-KIDNEY CELL-LINE (PK-15) [J].
ARAN, JM ;
PLAGEMANN, PGW .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1108 (01) :67-74
[2]   NUCLEOSIDE TRANSPORT-DEFICIENT MUTANTS OF PK-15 PIG-KIDNEY CELL-LINE [J].
ARAN, JM ;
PLAGEMANN, PGW .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1110 (01) :51-58
[3]  
BELT JA, 1988, J BIOL CHEM, V263, P13819
[4]   Recent advances in the molecular biology of nucleoside transporters of mammalian cells [J].
Cass, CE ;
Young, JD ;
Baldwin, SA .
BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE, 1998, 76 (05) :761-770
[5]  
CRAWFORD CR, 1990, J BIOL CHEM, V265, P9732
[6]   Cloning of the human equilibrative, nitrobenzylmercaptopurine riboside (NBMPR)-insensitive nucleoside transporter ei by functional expression in a transport-deficient cell line [J].
Crawford, CR ;
Patel, DH ;
Naeve, C ;
Belt, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (09) :5288-5293
[7]   Nucleoside and nucleobase transport systems of mammalian cells [J].
Griffith, DA ;
Jarvis, SM .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON BIOMEMBRANES, 1996, 1286 (03) :153-181
[8]   Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs [J].
Griffiths, M ;
Beaumont, N ;
Yao, SYM ;
Sundaram, M ;
Boumah, CE ;
Davies, A ;
Kwong, FYP ;
Coe, I ;
Cass, CE ;
Young, JD ;
Baldwin, SA .
NATURE MEDICINE, 1997, 3 (01) :89-93
[9]   Molecular Cloning and characterization of a nitrobenzylthioinosine-insensitive (ei) equilibrative nucleoside transporter from human placenta [J].
Griffiths, M ;
Yao, SYM ;
Abidi, F ;
Phillips, SEV ;
Cass, CE ;
Young, JD ;
Baldwin, SA .
BIOCHEMICAL JOURNAL, 1997, 328 :739-743
[10]   DIFFERENTIAL UPTAKE OF [H-3] GUANOSINE BY NUCLEOSIDE TRANSPORTER SUBTYPES IN EHRLICH ASCITES TUMOR-CELLS [J].
HAMMOND, JR .
BIOCHEMICAL JOURNAL, 1992, 287 :431-436