Improved false nearest neighbor method to detect determinism in time series data

被引:97
作者
Hegger, R [1 ]
Kantz, H [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 04期
关键词
D O I
10.1103/PhysRevE.60.4970
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The false nearest neighbor method introduced by Kennel et al.. [Phys. Rev. A 45, 3403 (1992)] is revisited and modified in order to ensure a correct distinction between low-dimensional chaotic data and noise. Still, correlated noise processes can yield vanishing percentages of false nearest neighbors for rather low embedding dimensions and can be mistaken for deterministic signals. Therefore, the false nearest neighbors method has always to be combined with a surrogate data test. [S1063-651X(99)08510-4].
引用
收藏
页码:4970 / 4973
页数:4
相关论文
共 14 条
[1]  
Abarbanel H, 1996, ANAL OBSERVED CHAOTI
[2]   COMPARISON OF ALGORITHMS CALCULATING OPTIMAL EMBEDDING PARAMETERS FOR DELAY TIME COORDINATES [J].
BUZUG, T ;
PFISTER, G .
PHYSICA D, 1992, 58 (1-4) :127-137
[3]   INDEPENDENT COORDINATES FOR STRANGE ATTRACTORS FROM MUTUAL INFORMATION [J].
FRASER, AM ;
SWINNEY, HL .
PHYSICAL REVIEW A, 1986, 33 (02) :1134-1140
[4]   CHARACTERIZATION OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1983, 50 (05) :346-349
[5]  
HEGGER R, TISEAN SOFTWARE PACK
[6]  
Kantz H, 1997, Nonlinear Time Series Analysis
[7]   DETERMINING EMBEDDING DIMENSION FOR PHASE-SPACE RECONSTRUCTION USING A GEOMETRICAL CONSTRUCTION [J].
KENNEL, MB ;
BROWN, R ;
ABARBANEL, HDI .
PHYSICAL REVIEW A, 1992, 45 (06) :3403-3411
[8]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[9]  
2
[10]   EMBEDOLOGY [J].
SAUER, T ;
YORKE, JA ;
CASDAGLI, M .
JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (3-4) :579-616