Unconventional continuous phase transition in a three-dimensional dimer model

被引:52
作者
Alet, Fabien [1 ]
Misguich, Gregoire
Pasquier, Vincent
Moessner, Roderich
Jacobsen, Jesper Lykke
机构
[1] Univ Toulouse 3, CNRS, UMR 5152, Phys Theor Lab, F-31062 Toulouse, France
[2] CEA Saclay, CNRS, URA 2306, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[3] Ecole Normale Super, CNRS, UMR 8549, Phys Theor Lab, F-75005 Paris, France
[4] Univ Paris 11, CNRS, UMR 8626, LPTMS, F-91405 Orsay, France
关键词
D O I
10.1103/PhysRevLett.97.030403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Phase transitions occupy a central role in physics, due both to their experimental ubiquity and their fundamental conceptual importance. The explanation of universality at phase transitions was the great success of the theory formulated by Ginzburg and Landau, and extended through the renormalization group by Wilson. However, recent theoretical suggestions have challenged this point of view in certain situations. In this Letter we report the first large-scale simulations of a three-dimensional model proposed to be a candidate for requiring a description beyond the Landau-Ginzburg-Wilson framework: we study the phase transition from the dimer crystal to the Coulomb phase in the cubic dimer model. Our numerical results strongly indicate that the transition is continuous and is compatible with a tricritical universality class, at variance with previous proposals.
引用
收藏
页数:4
相关论文
共 23 条
[1]   Interacting classical dimers on the square lattice [J].
Alet, F ;
Jacobsen, JL ;
Misguich, G ;
Pasquier, V ;
Mila, F ;
Troyer, M .
PHYSICAL REVIEW LETTERS, 2005, 94 (23)
[2]   The ALPS Project: Open Source Software for Strongly Correlated Systems [J].
Alet, F. ;
Dayal, P. ;
Grzesik, A. ;
Honecker, A. ;
Koerner, M. ;
Laeuchli, A. ;
Manmana, S. R. ;
McCulloch, I. P. ;
Michel, F. ;
Noack, R. M. ;
Schmid, G. ;
Schollwoeck, U. ;
Stoeckli, F. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 :30-35
[3]   Putting competing orders in their place near the Mott transition [J].
Balents, L ;
Bartosch, L ;
Burkov, A ;
Sachdev, S ;
Sengupta, K .
PHYSICAL REVIEW B, 2005, 71 (14)
[4]   PHASE-TRANSITIONS IN ABELIAN LATTICE GAUGE THEORIES [J].
BANKS, T ;
MYERSON, R ;
KOGUT, J .
NUCLEAR PHYSICS B, 1977, 129 (03) :493-510
[5]   Ordering in a frustrated pyrochlore antiferromagnet proximate to a spin liquid [J].
Bergman, DL ;
Fiete, GA ;
Balents, L .
PHYSICAL REVIEW B, 2006, 73 (13)
[6]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[7]   FINITE SIZE EFFECTS IN PHASE-TRANSITIONS [J].
BREZIN, E ;
ZINNJUSTIN, J .
NUCLEAR PHYSICS B, 1985, 257 (06) :867-893
[8]   FINITE-SIZE EFFECTS AT TEMPERATURE-DRIVEN 1ST-ORDER TRANSITIONS [J].
CHALLA, MSS ;
LANDAU, DP ;
BINDER, K .
PHYSICAL REVIEW B, 1986, 34 (03) :1841-1852
[9]   Coulomb and liquid dimer models in three dimensions [J].
Huse, DA ;
Krauth, W ;
Moessner, R ;
Sondhi, SL .
PHYSICAL REVIEW LETTERS, 2003, 91 (16)
[10]  
ISAKOV SV, CONDMAT0602430