The functional anatomy of cerebral reorganisation after focal brain injury

被引:49
作者
Ward, Nick S. [1 ]
Frackowiak, Richard S. J. [1 ]
机构
[1] UCL, Natl Hosp Neurol & Neurosurg, Inst Neurol, Wellcome Dept Imaging Neurosci, London WC1N 3BG, England
基金
英国惠康基金;
关键词
stroke; motor systems; recovery; functional magnetic resonance imaging (fMRI); transcranial magnetic stimulation (TMS); brain reorganisation;
D O I
10.1016/j.jphysparis.2006.03.002
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Stroke is a major cause of disability in all age groups. Although the value of specific rehabilitative therapies is now acknowledged, the mechanisms of impairment and recovery are not well understood. There is growing interest in the role that central nervous system reorganisation might play in the recovery process, and in particular whether this reorganisation can be manipulated to provide clinical benefits for patients. The careful use of non-invasive techniques such as functional magnetic resonance imaging and transcranial magnetic stimulation allows the study of the working human brain, and studies in humans suggest that functionally relevant adaptive changes occur in cerebral networks following stroke. An understanding of how these changes influence the recovery process will facilitate the development of novel therapeutic techniques that are based on neurobiological principles and will allow the delivery of specific therapies to appropriately targeted patients suffering from stroke. (c) 2006 Published by Elsevier Ltd.
引用
收藏
页码:425 / 436
页数:12
相关论文
共 78 条
[1]   Neural activity in human primary motor cortex areas 4a and 4p is modulated differentially by attention to action [J].
Binkofski, F ;
Fink, GR ;
Geyer, S ;
Buccino, G ;
Gruber, O ;
Shah, NJ ;
Taylor, JG ;
Seitz, RJ ;
Zilles, K ;
Freund, HJ .
JOURNAL OF NEUROPHYSIOLOGY, 2002, 88 (01) :514-519
[2]   How the brain perceives causality: an event-related fMRI study [J].
Blakemore, SJ ;
Fonlupt, P ;
Pachot-Clouard, M ;
Darmon, C ;
Boyer, P ;
Meltzoff, AN ;
Segebarth, C ;
Decety, J .
NEUROREPORT, 2001, 12 (17) :3741-3746
[3]   CEREBRAL CONTROL OF CONTRALATERAL AND IPSILATERAL ARM, HAND AND FINGER MOVEMENTS IN SPLIT-BRAIN RHESUS-MONKEY [J].
BRINKMAN, J ;
KUYPERS, HGJ .
BRAIN, 1973, 96 (DEC) :653-674
[4]   Electrophysiological transcortical diaschisis after cortical photothrombosis in rat brain [J].
BuchkremerRatzmann, I ;
August, M ;
Hagemann, G ;
Witte, OW .
STROKE, 1996, 27 (06) :1105-1109
[5]  
Bury SD, 2002, J NEUROSCI, V22, P8597
[6]   Remote changes in cortical excitability after stroke [J].
Bütefisch, CM ;
Netz, J ;
Wessling, M ;
Seitz, RJ ;
Hömberg, V .
BRAIN, 2003, 126 :470-481
[7]   Dynamics of motor network overactivation after striatocapsular stroke - A longitudinal PET study using a fixed-performance paradigm [J].
Calautti, C ;
Leroy, F ;
Guincestre, JY ;
Baron, JC .
STROKE, 2001, 32 (11) :2534-2542
[8]   EVIDENCE FOR BILATERAL INNERVATION OF CERTAIN HOMOLOGOUS MOTONEURON POOLS IN MAN [J].
CARR, LJ ;
HARRISON, LM ;
STEPHENS, JA .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 475 (02) :217-227
[9]   The functional neuroanatomy of simple and complex sequential finger movements: a PET study [J].
Catalan, MJ ;
Honda, M ;
Weeks, RA ;
Cohen, LG ;
Hallett, M .
BRAIN, 1998, 121 :253-264
[10]   Involvement of the ipsilateral motor cortex in finger movements of different complexities [J].
Chen, R ;
Gerloff, C ;
Hallett, M ;
Cohen, LG .
ANNALS OF NEUROLOGY, 1997, 41 (02) :247-254