Litter decomposition in grasslands of Central North America (US Great Plains)

被引:106
作者
Bontti, Eliana E. [1 ,2 ]
Decant, Joseph P. [1 ,2 ]
Munson, Seth M. [1 ,2 ]
Gathany, Mark A. [1 ,2 ]
Przeszlowska, Agnieszka [1 ]
Haddix, Michelle L. [1 ,2 ,3 ]
Owens, Stephanie [2 ]
Burke, Ingrid C. [1 ,2 ,3 ]
Parton, William J. [2 ,3 ]
Harmon, Mark E. [4 ]
机构
[1] Colorado State Univ, Dept Forest Rangeland & Watershed Stewardship, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA
[3] Colorado State Univ, Nat Resources Ecol Lab, Ft Collins, CO 80523 USA
[4] Oregon State Univ, Dept Forest Sci, Corvallis, OR 97331 USA
基金
美国国家科学基金会;
关键词
climate change; grasslands; Great Plains (USA); litter decomposition; litter quality; precipitation; root and leaf decomposition; temperature; HARDWOOD LEAF-LITTER; LIGNIN CONTROL; SOIL; CLIMATE; QUALITY; RATES; MODEL; PLANT; DYNAMICS; NITROGEN;
D O I
10.1111/j.1365-2486.2008.01815.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
One of the major concerns about global warming is the potential for an increase in decomposition and soil respiration rates, increasing CO2 emissions and creating a positive feedback between global warming and soil respiration. This is particularly important in ecosystems with large belowground biomass, such as grasslands where over 90% of the carbon is allocated belowground. A better understanding of the relative influence of climate and litter quality on litter decomposition is needed to predict these changes accurately in grasslands. The Long-Term Intersite Decomposition Experiment Team (LIDET) dataset was used to evaluate the influence of climatic variables (temperature, precipitation, actual evapotranspiration, and climate decomposition index), and litter quality (lignin content, carbon : nitrogen, and lignin : nitrogen ratios) on leaf and root decomposition in the US Great Plains. Wooden dowels were used to provide a homogeneous litter quality to evaluate the relative importance of above and belowground environments on decomposition. Contrary to expectations, temperature did not explain variation in root and leaf decomposition, whereas precipitation partially explained variation in root decomposition. Percent lignin was the best predictor of leaf and root decomposition. It also explained most variation in root decomposition in models which combined litter quality and climatic variables. Despite the lack of relationship between temperature and root decomposition, temperature could indirectly affect root decomposition through decreased litter quality and increased water deficits. These results suggest that carbon flux from root decomposition in grasslands would increase, as result of increasing temperature, only if precipitation is not limiting. However, where precipitation is limiting, increased temperature would decrease root decomposition, thus likely increasing carbon storage in grasslands. Under homogeneous litter quality, belowground decomposition was faster than aboveground and was best predicted by mean annual precipitation, which also suggests that the high moisture in soil accelerates decomposition belowground.
引用
收藏
页码:1356 / 1363
页数:8
相关论文
共 47 条
[1]   NITROGEN IMMOBILIZATION IN DECAYING HARDWOOD LEAF LITTER AS A FUNCTION OF INITIAL NITROGEN AND LIGNIN CONTENT [J].
ABER, JD ;
MELILLO, JM .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1982, 60 (11) :2263-2269
[2]   The freezer defrosting: global warming and litter decomposition rates in cold biomes [J].
Aerts, R. .
JOURNAL OF ECOLOGY, 2006, 94 (04) :713-724
[3]  
Allen R. G., 1998, FAO Irrigation and Drainage Paper
[4]   Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation [J].
Austin, Amy T. ;
Vivanco, Lucia .
NATURE, 2006, 442 (7102) :555-558
[5]   Litter decomposition in a transect of Norway spruce forests: Substrate quality and climate control [J].
Berg, Bjoern ;
Johansson, Maj-Britt ;
Meentemeyer, Vernon .
Canadian Journal of Forest Research, 2000, 30 (07) :1136-1147
[6]   TEXTURE, CLIMATE, AND CULTIVATION EFFECTS ON SOIL ORGANIC-MATTER CONTENT IN US GRASSLAND SOILS [J].
BURKE, IC ;
YONKER, CM ;
PARTON, WJ ;
COLE, CV ;
FLACH, K ;
SCHIMEL, DS .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1989, 53 (03) :800-805
[7]   Plant species traits are the predominant control on litter decomposition rates within biomes worldwide [J].
Cornwell, William K. ;
Cornelissen, Johannes H. C. ;
Amatangelo, Kathryn ;
Dorrepaal, Ellen ;
Eviner, Valerie T. ;
Godoy, Oscar ;
Hobbie, Sarah E. ;
Hoorens, Bart ;
Kurokawa, Hiroko ;
Perez-Harguindeguy, Natalia ;
Quested, Helen M. ;
Santiago, Louis S. ;
Wardle, David A. ;
Wright, Ian J. ;
Aerts, Rien ;
Allison, Steven D. ;
van Bodegom, Peter ;
Brovkin, Victor ;
Chatain, Alex ;
Callaghan, Terry V. ;
Diaz, Sandra ;
Garnier, Eric ;
Gurvich, Diego E. ;
Kazakou, Elena ;
Klein, Julia A. ;
Read, Jenny ;
Reich, Peter B. ;
Soudzilovskaia, Nadejda A. ;
Victoria Vaieretti, M. ;
Westoby, Mark .
ECOLOGY LETTERS, 2008, 11 (10) :1065-1071
[8]   Modeling soil CO2 emissions from ecosystems [J].
Del Grosso, SJ ;
Parton, WJ ;
Mosier, AR ;
Holland, EA ;
Pendall, E ;
Schimel, DS ;
Ojima, DS .
BIOGEOCHEMISTRY, 2005, 73 (01) :71-91
[9]  
Epstein HE, 2002, ECOLOGY, V83, P320, DOI 10.1890/0012-9658(2002)083[0320:RPODAP]2.0.CO
[10]  
2