Glucose toxicity is responsible for the development of impaired regulation of endogenous glucose production and hepatic glucokinase in Zucker diabetic fatty rats

被引:35
作者
Fujimoto, Yuka [1 ]
Torres, Tracy P. [1 ]
Donahue, E. Patrick [1 ]
Shiota, Masakazu [1 ]
机构
[1] Vanderbilt Univ, Sch Med, Dept Physiol & Mol Biophys, Nashville, TN 37232 USA
关键词
D O I
10.2337/db05-1511
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The effect of restoration of normoglycemia by a novel sodium-dependent glucose transporter inhibitor (T-1095) on impaired hepatic glucose uptake was examined in 14-week-old Zucker diabetic fatty (ZDF) rats. The nontreated group exhibited persistent endogenous glucose production (EGP) despite marked hyperglycemia. Gluconeogenesis and glucose cycling (GC were responsible for 46 and 51% of glucose-6-phosphatase (G6Pase) flux, respectively. Net incorporation of plasma glucose into hepatic glycogen was negligible. Glucokinase (GK) and its inhibitory protein, GK regulatory protein (GKRP), were colocalized in the cytoplasm of hepatocytes. At day 7 of drug administration, EGP was slightly reduced, but G6Pase flux and GC were markedly lower compared with the nontreated group. In this case, GK and GKRP were colocalized in the nuclei of hepatocytes. When plasma glucose and insulin levels were raised during a clamp, EGP was completely suppressed and GC, glycogen synthesis from plasma glucose, and the fractional contribution of plasma glucose to uridine diphosphoglucose flux were markedly increased. GK, but not GKRP, was translocated from the nucleus to the cytoplasm. Glucotoxicity may result in the blunted response of hepatic glucose flux to elevated plasma glucose and/or insulin associated with impaired regulation of GK by GKRP in ZDF rats.
引用
收藏
页码:2479 / 2490
页数:12
相关论文
共 67 条
[1]   The physiological role of glucokinase binding and translocation in hepatocytes [J].
Agius, L .
ADVANCES IN ENZYME REGULATION, VOL 38, 1998, 38 :303-331
[2]   Evidence for a role of glucose-induced translocation of glucokinase in the control of hepatic glycogen synthesis [J].
Agius, L ;
Peak, M ;
Newgard, CB ;
GomezFoix, AM ;
Guinovart, JJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (48) :30479-30486
[3]   Enhanced glucose cycling and suppressed de novo synthesis of glucose-6-phosphate result in a net unchanged hepatic glucose output in ob/ob mice [J].
Bandsma, RHJ ;
Grefhorst, A ;
van Dijk, TH ;
van der Sluijs, FH ;
Hammer, A ;
Reijngoud, DJ ;
Kuipers, F .
DIABETOLOGIA, 2004, 47 (11) :2022-2031
[4]   Glucosamine-induced inhibition of liver glucokinase impairs the ability of hyperglycemia to suppress endogenous glucose production [J].
Barzilai, N ;
Hawkins, M ;
Angelov, I ;
Hu, MZ ;
Rossetti, L .
DIABETES, 1996, 45 (10) :1329-1335
[5]   Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat [J].
Barzilai, N ;
Banerjee, S ;
Hawkins, M ;
Chen, W ;
Rossetti, L .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (07) :1353-1361
[6]  
BARZILAI N, 1993, J BIOL CHEM, V268, P25019
[7]   Effects of type 2 diabetes on the ability of insulin and glucose to regulate splanchnic and muscle glucose metabolism - Evidence for a defect in haptic glucokinase activity [J].
Basu, A ;
Basu, R ;
Shah, P ;
Vella, A ;
Johnson, CM ;
Nair, KS ;
Jensen, MD ;
Schwenk, WF ;
Rizza, RA .
DIABETES, 2000, 49 (02) :272-283
[8]   Type 2 diabetes impairs splanchnic uptake of glucose but does not alter intestinal glucose absorption during enteral glucose feeding - Additional evidence for a defect in hepatic glucokinase activity [J].
Basu, A ;
Basu, R ;
Shah, P ;
Vella, A ;
Johnson, CM ;
Jensen, M ;
Nair, KS ;
Schwenk, WF ;
Rizza, RA .
DIABETES, 2001, 50 (06) :1351-1362
[9]   EFFECTS OF INSULIN ON HEPATIC GLUCOSE METABOLISM AND GLUCOSE UTILIZATION BY TISSUES [J].
BODO, RCD ;
BISHOP, JS ;
DUNN, A ;
ALTSZULE, N ;
STEELE, R .
DIABETES, 1963, 12 (01) :16-&
[10]   Specific features of glycogen metabolism in the liver [J].
Bollen, M ;
Keppens, S ;
Stalmans, W .
BIOCHEMICAL JOURNAL, 1998, 336 :19-31