The tanh method .1. Exact solutions of nonlinear evolution and wave equations

被引:818
作者
Malfliet, W [1 ]
Hereman, W [1 ]
机构
[1] COLORADO SCH MINES,DEPT MATH & COMP SCI,GOLDEN,CO 80401
来源
PHYSICA SCRIPTA | 1996年 / 54卷 / 06期
关键词
D O I
10.1088/0031-8949/54/6/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A systemized version of the tanh method is used to solve particular evolution and wave equations. If one deals with conservative systems, one seeks travelling wave solutions in the form of a finite series in tanh. If present, boundary conditions are implemented in this expansion. The associated velocity can then be determined a priori, provided the solution vanishes at infinity. Hence, exact closed form solutions can be obtained easily in various cases.
引用
收藏
页码:563 / 568
页数:6
相关论文
共 26 条
[1]   TRAVELING-WAVE SOLUTIONS TO THE KORTEWEG-DEVRIES-BURGERS EQUATION [J].
BONA, JL ;
SCHONBEK, ME .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1985, 101 :207-226
[2]   KORTEWEG-DE VRIES-BURGERS EQUATION [J].
CANOSA, J ;
GAZDAG, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (04) :393-403
[3]   ON SERIES EXPANSIONS GIVING CLOSED-FORM SOLUTIONS OF KORTEWEG-DEVRIES-LIKE EQUATIONS [J].
COFFEY, MW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (06) :1580-1592
[4]   SOLITARY WAVE SOLUTIONS OF NONLINEAR EVOLUTION AND WAVE-EQUATIONS USING A DIRECT METHOD AND MACSYMA [J].
HEREMAN, W ;
TAKAOKA, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4805-4822
[5]  
HIROTA R, 1980, BACKLUND TRANSFORMAT, P157
[6]  
HUIBIN L, 1990, J PHYS A, V23, P3923
[7]   STABILITY OF BURGERS SHOCK WAVE AND KORTEWEG-DE VRIES DOLITON [J].
JEFFERY, A ;
KAKUTANI, T .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1970, 20 (05) :463-&
[8]   EXACT-SOLUTIONS TO THE KORTEWEG-DEVRIES-BURGERS EQUATION [J].
JEFFREY, A ;
XU, SQ .
WAVE MOTION, 1989, 11 (06) :559-564
[9]   EXACT-SOLUTIONS TO THE KDV-BURGERS EQUATION [J].
JEFFREY, A ;
MOHAMAD, MNB .
WAVE MOTION, 1991, 14 (04) :369-375
[10]  
JOHNSON R, 1973, J FLUID MECH, V86, P415