A subspace theorem approach to integral points on curves

被引:34
作者
Corvaja, P
Zannier, U
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
[2] Univ Venice, Ist Arch DCA, I-30135 Venice, Italy
关键词
D O I
10.1016/S1631-073X(02)02240-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a proof of Siegel*s theorem on integral points on affine curves, through the Schmidt subspace theorem, rather than Roth's theorem. This approach allows one to work only on curves, avoiding the embedding into Jacobians and the subsequent use of tools from the arithmetic of Abelian varieties. (C) 2002 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:267 / 271
页数:5
相关论文
共 11 条
[1]  
Evertse JH, 1996, COMPOS MATH, V101, P225
[2]   THEORIES OF FINITENESS FOR ABELIAN-VARIETIES OVER NUMBER-FIELDS [J].
FALTINGS, G .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :349-366
[3]  
FORSTER O, 1981, RIEMANN SURFACES
[4]  
Hindry M, 2000, GRADUATE TEXTS MATH
[5]  
SCHLICKEWEI HP, 1992, COMPOS MATH, V82, P245
[6]  
Schmidt W.M., 1991, Lecture Notes in Mathematics, V1467
[7]  
SCHMIDT WM, 1987, LECT NOTES MATH, V785
[8]  
SERRE JP, 1989, LECT NORDELL WEIL TH
[9]  
Siegel C., 1929, Abh. Preuβis. Akad. Wiss. Phys.-Math. Kl, V30, P1
[10]  
VOJTA P, LECT NOTES MATH, V1239