Analysis of complex and chaotic patterns near a codimension-2 Turing-Hopf point in a reaction-diffusion model

被引:23
作者
Meixner, M [1 ]
Bose, S [1 ]
Scholl, E [1 ]
机构
[1] TECH UNIV BERLIN,INST THEORET PHYS,D-10623 BERLIN,GERMANY
来源
PHYSICA D | 1997年 / 109卷 / 1-2期
关键词
D O I
10.1016/S0167-2789(97)00164-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a reaction-diffusion system of activator-inhibitor type, and characterize the resulting complex and chaotic spatio-temporal patterns by their Lyapunov spectrum and by a Karhunen-Loeve decomposition into empirical orthogonal eigenmodes. Different periodic patterns corresponding to localized Hopf and Turing modes, and mixed modes including subharmonic spatio-temporal spiking are found near a codimension-2 bifurcation point. The asymptotic patterns are preceded by transient spatio-temporal chaos, before the system abruptly locks into a periodic state in space and time. The Karhunen-Loeve decomposition is shown to be a powerful tool for extracting detailed quantitative information of complex space-time data.
引用
收藏
页码:128 / 138
页数:11
相关论文
共 15 条
[1]  
Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236
[2]  
Benettin G., 1980, MECCANICA, V15, P21, DOI DOI 10.1007/BF02128237
[3]   THERMODYNAMIC ASPECTS OF THE TRANSITION TO SPATIOTEMPORAL CHAOS [J].
CAPONERI, M ;
CILIBERTO, S .
PHYSICA D-NONLINEAR PHENOMENA, 1992, 58 (1-4) :365-383
[4]  
ENGEL H, 1996, SELF ORG ACTIVATOR O
[5]   FRONTS BETWEEN HOPF-TYPE AND TURING-TYPE DOMAINS IN A 2-COMPONENT REACTION-DIFFUSION SYSTEM [J].
HEIDEMANN, G ;
BODE, M ;
PURWINS, HG .
PHYSICS LETTERS A, 1993, 177 (03) :225-230
[6]  
MEIXNER M, UNPUB PHYS REV E
[7]  
Mikhailov AS, 1994, FDN SYNERGETICS
[8]  
NIEDERNOSTHEIDE F.-J., 1995, Springer Proc. in Physics
[9]  
Press W. H., 1992, Numerical recipes in C++: The Art of Scientific Computing, V2nd
[10]  
SCHOLL E, 1996, SELF ORG ACTIVATOR I, P10