Role of the ATPase domain of the Cockayne syndrome group B protein in UV induced apoptosis

被引:39
作者
Balajee, AS [1 ]
DeSantis, LP [1 ]
Brosh, RM [1 ]
Selzer, R [1 ]
Bohr, VA [1 ]
机构
[1] NIA, Genet Mol Lab, NIH, Baltimore, MD 21224 USA
关键词
Cockayne syndrome; transcription coupled repair; neurodegeneration; RNA pol II transcription; apoptosis; p53 independent pathway;
D O I
10.1038/sj.onc.1203372
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cockayne syndrome (CS) is a human autosomal recessive disorder characterized by many neurological and developmental abnormalities, CS cells are defective in the transcription coupled repair (TCR) pathway that removes DNA damage from the transcribed strand of active genes, The individuals suffering from CS do not generally develop cancer but show increased neurodegeneration, Two genetic complementation groups (CS-A and CS-B) have been identified, The lack of cancer formation in CS may be due to selective elimination of cells containing DNA damage by a suicidal pathway. In this study, we have evaluated the role of the CSB gene in UV induced apoptosis in human and hamster cells. The hamster cell line UV61 carries a mutation in the homolog of the human CSB gene, We show that both human CS-B and hamster UV61 cells display increased apoptotic response following UV exposure compared with normal cells, The increased sensitivity of UV61 cells to apoptosis is complemented by the transfection of the wild type human CSB gene, In order to determine which functional domain of the CSB gene participates in the apoptotic pathway, we constructed stable cell lines with different CSB domain disruptions, UV61 cells were stably transfected with the human CSB cDNA containing a point mutation in the highly conserved glutamic acid residue in ATPase motif II, This cell line (UV61/pc3.1-CSBE646Q) showed the same increased apoptosis as the UV61 cells, In contrast, cells containing a deletion in the acidic domain at the N-terminal end of the CSB protein had no effect on apoptosis, This indicates that the integrity of the ATPase domain of CSB protein is critical for preventing the UV induced apoptotic pathway, In primary human CS-B cells, the induction and stabilization of the p53 protein seems to correlate with their increased apoptotic potential, In contrast, no change in the level of either p53 or activation of mdm2 protein by p53 was observed in hamster UV61 cells after UV exposure. This suggests that the CSB dependent apoptotic pathway can occur independently of the transactivation potential of p53 in hamster cells.
引用
收藏
页码:477 / 489
页数:13
相关论文
共 37 条
  • [1] Transcription abnormalities potentiate apoptosis of normal human fibroblasts
    Andera, L
    Wasylyk, B
    [J]. MOLECULAR MEDICINE, 1997, 3 (12) : 852 - 863
  • [2] Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis
    Attardi, LD
    Lowe, SW
    Brugarolas, J
    Jacks, T
    [J]. EMBO JOURNAL, 1996, 15 (14) : 3693 - 3701
  • [3] Reduced RNA polymerase II transcription in intact and permeabilized cockayne syndrome group B cells
    Balajee, AS
    May, A
    Dianov, GL
    Friedberg, EC
    Bohr, VA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (09) : 4306 - 4311
  • [4] The ATPase domain but not the acidic region of cockayne syndrome group B gene product is essential for DNA repair
    Brosh, RM
    Balajee, AS
    Selzer, RR
    Sunesen, M
    De Santis, LP
    Bohr, VA
    [J]. MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (11) : 3583 - 3594
  • [5] THE ROLE OF P53 IN REGULATING GENOMIC STABILITY WHEN DNA AND RNA-SYNTHESIS ARE INHIBITED
    CHERNOVA, OB
    CHERNOV, MV
    AGARWAL, ML
    TAYLOR, WR
    STARK, GR
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (10) : 431 - 434
  • [6] Reduced RNA polymerase II transcription in extracts of Cockayne syndrome and xeroderma pigmentosum/Cockayne syndrome cells
    Dianov, GL
    Houle, JF
    Iyer, N
    Bohr, VA
    Friedberg, EC
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (18) : 3636 - 3642
  • [7] Dumaz N, 1997, MOL CARCINOGEN, V20, P340, DOI 10.1002/(SICI)1098-2744(199712)20:4<340::AID-MC3>3.0.CO
  • [8] 2-N
  • [9] Friedberg EC, 1996, ANNU REV BIOCHEM, V65, P15
  • [10] Guillouf C, 1998, INT J ONCOL, V13, P107