Semiparametric regression estimation in copula models

被引:3
作者
Bagdonavicius, Vilijandas
Malov, Sergey V.
Nikulin, Mikhail S.
机构
[1] St Petersburg State Univ, Dept Math & Mech, St Petersburg 198504, Russia
[2] Univ Vilnius, Dept Stat, Vilnius, Lithuania
[3] Univ Bordeaux 2, F-33076 Bordeaux, France
[4] RAS, VA Steklov Math Inst, Lab Stat Methods, St Petersburg, Russia
关键词
copula; generalized additive-multiplicative model; multivariate rank statistics; semiparametric copulas; transfer functional;
D O I
10.1080/03610920600637297
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider some methods of semiparametric regression estimation in multivariate models when the common distribution function is represented using a copula and the marginals satisfy a generalized regression model using a transfer functional. Sufficient conditions for consistency and joint asymptotic normality of the finite-dimensional parameters are obtained.
引用
收藏
页码:1449 / 1467
页数:19
相关论文
共 20 条
[1]  
BAGDONAVICIOUS V, 1998, 98018 MAB U BORD 1
[2]   Asymptotical analysis of semiparametric models in survival analysis and accelerated life testing [J].
Bagdonavicius, V ;
Nikulin, M .
STATISTICS, 1997, 29 (03) :261-283
[3]  
BAGDONAVICIUS V, 1996, 96012 MAB U BORD 1
[4]  
BAGDONAVICIUS V, 1995, EUROPEAN J DIAGNOSIS, V5, P307
[5]   Transfer functionals and semiparametric regression models [J].
Bagdonavicius, VB ;
Nikulin, MS .
BIOMETRIKA, 1997, 84 (02) :365-378
[6]   MULTIVARIATE GENERALIZATIONS OF THE PROPORTIONAL HAZARDS MODEL [J].
CLAYTON, D ;
CUZICK, J .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1985, 148 :82-117
[7]  
CLAYTON DG, 1978, BIOMETRIKA, V65, P141, DOI 10.1093/biomet/65.1.141
[8]  
Frank MJ., 1979, AEQUATIONES MATH, V19, P194, DOI [10.1007/BF02189866, DOI 10.1007/BF02189866]
[9]   A SEMIPARAMETRIC ESTIMATION PROCEDURE OF DEPENDENCE PARAMETERS IN MULTIVARIATE FAMILIES OF DISTRIBUTIONS [J].
GENEST, C ;
GHOUDI, K ;
RIVEST, LP .
BIOMETRIKA, 1995, 82 (03) :543-552
[10]   ARCHIMEDEAN COPULAS AND FAMILIES OF BIDIMENSIONAL LAWS FOR WHICH THE MARGINALS ARE GIVEN [J].
GENEST, C ;
MACKAY, RJ .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1986, 14 (02) :145-159