Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model

被引:148
作者
Arya, Gaurav
Schlick, Tamar
机构
[1] NYU, Dept Chem, New York, NY 10012 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
Monte Carlo simulations; nucleosome; DNA/protein complexes; chromatin structure regulation; irregular zigzag;
D O I
10.1073/pnas.0604817103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The role of each histone tail in regulating chromatin structure is elucidated by using a coarse-grained model of an oligonucleosome incorporating flexible histone tails that reproduces the conformational and dynamical properties of chromatin. Specifically, a tailored configurational-bias Monte Carlo method that efficiently samples the possible conformational states of oligonucleosomes yields positional distributions of histone tails around nucleosomes and illuminates the nature of tail/core/DNA interactions at various salt milieus. Analyses indicate that the H4 histone tails are most important in terms of mediating internucleosomal interactions, especially in highly compact chromatin with linker histones, followed by H3, H2A, and H2B tails in decreasing order of importance. In addition to mediating internucleosomal interactions, the H3 histone tails crucially screen the electrostatic repulsion between the entering/exiting DNA linkers. The H2A and H2B tails distribute themselves along the periphery of chromatin fibers and are important for mediating fiber/fiber interactions. A delicate balance between tail-mediated internucleosomal attraction and repulsion among linker DNAs allows the entering/exiting linker DNAs to align perpendicular to each other in linker-histone deficient chromatin, leading to the formation of an irregular zigzag-folded fiber with dominant pair-wise interactions between nucleosomes i and i +/- 4.
引用
收藏
页码:16236 / 16241
页数:6
相关论文
共 36 条
[1]   BENDING AND TWISTING DYNAMICS OF SHORT LINEAR DNAS - ANALYSIS OF THE TRIPLET ANISOTROPY DECAY OF A 209-BASE PAIR FRAGMENT BY BROWNIAN SIMULATION [J].
ALLISON, S ;
AUSTIN, R ;
HOGAN, M .
JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (07) :3843-3854
[2]   Flexible histone tails in a new mesoscopic oligonucleosome model [J].
Arya, Gaurav ;
Zhang, Qing ;
Schlick, Tamar .
BIOPHYSICAL JOURNAL, 2006, 91 (01) :133-150
[3]   Computational modeling predicts the structure and dynamics of chromatin fiber [J].
Beard, DA ;
Schlick, T .
STRUCTURE, 2001, 9 (02) :105-114
[4]  
Beard DA, 2001, BIOPOLYMERS, V58, P106, DOI 10.1002/1097-0282(200101)58:1<106::AID-BIP100>3.0.CO
[5]  
2-#
[6]   Chromatin:: A tunable spring at work inside chromosomes -: art. no. 051921 [J].
Ben-Haïm, E ;
Lesne, A ;
Victor, JM .
PHYSICAL REVIEW E, 2001, 64 (05) :19-051921
[7]   Role of histone tails in the conformation and interactions of nucleosome core particles [J].
Bertin, A ;
Leforestier, A ;
Durand, D ;
Livolant, F .
BIOCHEMISTRY, 2004, 43 (16) :4773-4780
[8]   FRICTIONAL COEFFICIENTS OF MULTISUBUNIT STRUCTURES .1. THEORY [J].
BLOOMFIE.V ;
DALTON, WO ;
VANHOLDE, KE .
BIOPOLYMERS, 1967, 5 (02) :135-&
[9]   Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure [J].
Cui, Y ;
Bustamante, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :127-132
[10]  
Davie JR, 2004, CHROMATIN STRUCTURE, V39, P205