Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize

被引:262
作者
Yanagisawa, S [1 ]
机构
[1] Univ Tokyo, Grad Sch Arts & Sci, Dept Life Sci, Meguro Ku, Tokyo 1538902, Japan
关键词
D O I
10.1046/j.1365-313x.2000.00685.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Dof proteins are transcription factors that appear to be unique to plants. Maize Dof1 has been suggested to be a regulator for C4 photosynthetic phosphoenolpyruvate carboxylase (C4PEPC) gene expression. The present study demonstrates that Dof1 also enhances transcription from the promoters of both cytosolic orthophosphate dikinase (cyPPDK) genes and a non-photosynthetic PEPC gene, which are not present in animals. Expression of Dof1-specific antisense RNA or the DNA-binding domain of Dof1 alone reduced the activities of these promoters in maize leaf protoplasts. Electrophoretic mobility shift assays revealed several Dof1-binding sites in these promoters. The cyppdk1 promoter contained two Dof1-binding sites, one of which was linked to the binding site of a plant bZIP protein. By using deleted or mutated cyppdk1 promoters, both Dof1-binding sites were shown to be functional. Furthermore, Dof1 elevated the activities of the cyppdk and pepc promoters more strongly in greening protoplasts than in etiolated protoplasts, in accordance with the different activities of these promoters in two types of protoplasts. Another Dof protein of maize, Dof2, suppressed the activity of the C4pepc promoter but was able to activate certain other promoters. These results suggest that Dof proteins may play regulatory roles in multiple gene expressions associated with the plant-specific pathway for carbon metabolism in maize. In addition, the primary characteristic of Dof proteins, i.e. different activities in distinct types of cells and opposite actions on promoters in different contexts, suggests the potential of Dof proteins to differentially regulate diverse promoters in a variety of plant tissues. Speculation raised by these results concerning the evolution of the C4pepc gene is also discussed.
引用
收藏
页码:281 / 288
页数:8
相关论文
共 38 条
[1]   The wheat transcriptional activator SPA: A seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes [J].
Albani, D ;
HammondKosack, MCU ;
Smith, C ;
Conlan, S ;
Colot, V ;
Holdsworth, M ;
Bevan, MW .
PLANT CELL, 1997, 9 (02) :171-184
[2]   HIGHER-PLANT PHOSPHOENOLPYRUVATE CARBOXYLASE - STRUCTURE AND REGULATION [J].
ANDREO, CS ;
GONZALEZ, DH ;
IGLESIAS, AA .
FEBS LETTERS, 1987, 213 (01) :1-8
[3]   PYRUVATE ORTHO-PHOSPHATE DIKINASE OF C-3 SEEDS AND LEAVES AS COMPARED TO THE ENZYME FROM MAIZE [J].
AOYAGI, K ;
BASSHAM, JA .
PLANT PHYSIOLOGY, 1984, 75 (02) :387-392
[4]   The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants [J].
Baumann, K ;
De Paolis, A ;
Costantino, P ;
Gualberti, G .
PLANT CELL, 1999, 11 (03) :323-333
[5]   The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites [J].
Chen, WQ ;
Chao, G ;
Singh, KB .
PLANT JOURNAL, 1996, 10 (06) :955-966
[6]   Phosphoenolpyruvate carboxylase: A ubiquitous, highly regulated enzyme in plants [J].
Chollet, R ;
Vidal, J ;
OLeary, MH .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1996, 47 :273-298
[7]   MAIZE POLYUBIQUITIN GENES - STRUCTURE, THERMAL PERTURBATION OF EXPRESSION AND TRANSCRIPT SPLICING, AND PROMOTER ACTIVITY FOLLOWING TRANSFER TO PROTOPLASTS BY ELECTROPORATION [J].
CHRISTENSEN, AH ;
SHARROCK, RA ;
QUAIL, PH .
PLANT MOLECULAR BIOLOGY, 1992, 18 (04) :675-689
[8]  
DePaolis A, 1996, PLANT J, V10, P215, DOI 10.1046/j.1365-313X.1996.10020215.x
[9]   PYRUVATE,PI DIKINASE AND NADP-MALATE DEHYDROGENASE IN C-4 PHOTOSYNTHESIS - PROPERTIES AND MECHANISM OF LIGHT DARK REGULATION [J].
EDWARDS, GE ;
NAKAMOTO, H ;
BURNELL, JN ;
HATCH, MD .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1985, 36 :255-286
[10]  
HATCH MD, 1992, PLANT CELL PHYSIOL, V33, P333