Control of C4 photosynthesis:: effects of reduced activities of phosphoenolpyruvate carboxylase on CO2 assimilation in Amaranthus edulis L.

被引:18
作者
Bailey, KJ
Battistelli, A
Dever, LV
Lea, PJ
Leegood, RC [1 ]
机构
[1] Univ Sheffield, Robert Hill Inst, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England
[3] Ist Agroselvicoltura, I-05010 Porano, Italy
[4] Univ Lancaster, Dept Biol Sci, Lancaster LA1 4YQ, England
关键词
C-4; plants; Amaranthus edulis; phosphoenolpyruvate carboxylase; CO2; assimilation; control of photosynthesis;
D O I
10.1093/jexbot/51.suppl_1.339
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Heterozygous mutants of Amaranthus edulis deficient in PEP carboxylase (PEPC) have been used to study the control of photosynthetic carbon assimilation. A reduction in PEPC activity led to a decrease in the initial slope of the relationship between the CO2 assimilation rate and the intercellular CO2 concentration and to a decrease in photosynthesis at high light intensities, consistent with a decrease in the capacity of the C-4 cycle in high light, PEPC exerted appreciable control on photosynthetic flux in the wild-type, with a relatively high flux control coefficient of 0.35 in saturating light and ambient CO2. The flux control coefficient was decreased in low light or increased in low CO2 or in plants containing lower PEPC activity, However, the rate of CO2 assimilation decreased down to about 55% PEPC, followed by an up-turn in the light-saturated photosynthetic rate as PEPC was further reduced, suggesting the existence of a mechanism that compensates for the loss of PEPC activity. The amounts of photosynthetic metabolites, including glycine and serine, also showed a biphasic response to decreasing PEPC, There was a linear relationship between the activity of PEPC and the activation state of the enzyme. A possible mechanism of compensation involving photorespiratory intermediates is discussed.
引用
收藏
页码:339 / 346
页数:8
相关论文
共 38 条
[1]  
Ashton A, 1990, METHODS PLANT BIOCH, V3, P39, DOI DOI 10.1016/B978-0-12-461013-2.50010-1
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]   Phosphoenolpyruvate carboxylase: A ubiquitous, highly regulated enzyme in plants [J].
Chollet, R ;
Vidal, J ;
OLeary, MH .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1996, 47 :273-298
[4]   COUPLED PHOTOSYNTHESIS-STOMATAL CONDUCTANCE MODEL FOR LEAVES OF C4 PLANTS [J].
COLLATZ, GJ ;
RIBAS-CARBO, M ;
BERRY, JA .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1992, 19 (05) :519-538
[5]   Control of photosynthesis in Amaranthus edulis mutants with reduced amounts of PEP carboxylase [J].
Dever, LV ;
Bailey, KJ ;
Leegood, RC ;
Lea, PJ .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1997, 24 (04) :469-476
[6]   THE ISOLATION AND CHARACTERIZATION OF MUTANTS OF THE C-4 PHOTOSYNTHETIC PATHWAY [J].
DEVER, LV ;
BLACKWELL, RD ;
FULLWOOD, NJ ;
LACUESTA, M ;
LEEGOOD, RC ;
ONEK, LA ;
PEARSON, M ;
LEA, PJ .
JOURNAL OF EXPERIMENTAL BOTANY, 1995, 46 :1363-1376
[7]   REGULATION OF PHOSPHOENOLPYRUVATE CARBOXYLASE ACTIVITY IN MAIZE LEAVES [J].
DONCASTER, HD ;
LEEGOOD, RC .
PLANT PHYSIOLOGY, 1987, 84 (01) :82-87
[8]   REGULATION OF PHOTOSYNTHESIS IN LEAVES OF C-4 PLANTS FOLLOWING A TRANSITION FROM HIGH TO LOW LIGHT [J].
DONCASTER, HD ;
ADCOCK, MD ;
LEEGOOD, RC .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 973 (02) :176-184
[9]   KINETIC-ANALYSIS OF THE NONPHOSPHORYLATED, IN-VITRO PHOSPHORYLATED, AND PHOSPHORYLATION-SITE-MUTANT (ASP8) FORMS OF INTACT RECOMBINANT C-4 PHOSPHOENOLPYRUVATE CARBOXYLASE FROM SORGHUM [J].
DUFF, SMG ;
ANDREO, CS ;
PACQUIT, V ;
LEPINIEC, L ;
SARATH, G ;
CONDON, SA ;
VIDAL, J ;
GADAL, P ;
CHOLLET, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 228 (01) :92-95
[10]   PYRUVATE,PI DIKINASE AND NADP-MALATE DEHYDROGENASE IN C-4 PHOTOSYNTHESIS - PROPERTIES AND MECHANISM OF LIGHT DARK REGULATION [J].
EDWARDS, GE ;
NAKAMOTO, H ;
BURNELL, JN ;
HATCH, MD .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1985, 36 :255-286