Caffeine abolishes the mammalian G2/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity

被引:251
作者
Zhou, BBS
Chaturvedi, P
Spring, K
Scott, SP
Johanson, RA
Mishra, R
Mattern, MR
Winkler, JD
Khanna, KK
机构
[1] SmithKline Beecham Pharmaceut, Dept Oncol Res, King Of Prussia, PA 19406 USA
[2] Univ Queensland, Queensland Inst Med Res, Royal Brisbane Hosp, Brisbane, Qld 4029, Australia
关键词
D O I
10.1074/jbc.275.14.10342
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent evidence indicates that arrest of mammalian cells at the G(2)/M checkpoint involves inactivation and translocation of Cdc25C, which is mediated by phosphorylation of Cdc25C on serine 216, Data obtained with a phospho-specific antibody against serine 216 suggest that activation of the DNA damage checkpoint is accompanied by an increase in serine 216 phosphorylated Cdc25C in the nucleus after exposure of cells to gamma-radiation. Prior treatment of cells with 2 mM caffeine inhibits such a change and markedly reduces radiation-induced ataxia-telangiectasia-mutated (ATM)-dependent Chk2/Cds1 activation and phosphorylation. Chk2/Cds1 is known to localize in the nucleus and to phosphorylate Cdc25C at serine 216 in vitro. Caffeine does not inhibit Chk2/Cds1 activity directly, but rather, blocks the activation of Chk2/Cds1 by inhibiting ATM kinase activity. In vitro, ATM phosphorylates Chk2/Cds1 at threonine 68 close to the N terminus, and caffeine inhibits this phosphorylation with an IC50 of approximately 200 mu M. Using a phospho-specific antibody against threonine 68, we demonstrate that radiation-induced, ATM-dependent phosphorylation of Chk2/Cds1 at this site is caffeine-sensitive. From these results, we propose a model wherein caffeine abrogates the G(2)/M checkpoint by targeting the ATM-Chk2/Cds1 pathway; by inhibiting ATM, it prevents the serine 216 phosphorylation of Cdc25C in the nucleus. Inhibition of ATM provides a molecular explanation for the increased radiosensitivity of caffeine-treated cells.
引用
收藏
页码:10342 / 10348
页数:7
相关论文
共 33 条
  • [1] Enhanced phosphorylation of p53 by ATN in response to DNA damage
    Banin, S
    Moyal, L
    Shieh, SY
    Taya, Y
    Anderson, CW
    Chessa, L
    Smorodinsky, NI
    Prives, C
    Reiss, Y
    Shiloh, Y
    Ziv, Y
    [J]. SCIENCE, 1998, 281 (5383) : 1674 - 1677
  • [2] Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation
    Baskaran, R
    Wood, LD
    Whitaker, LL
    Canman, CE
    Morgan, SE
    Xu, Y
    Barlow, C
    Baltimore, D
    WynshawBoris, A
    Kastan, MB
    Wang, JYJ
    [J]. NATURE, 1997, 387 (6632) : 516 - 519
  • [3] Defect in multiple cell cycle checkpoints in ataxia-telangiectasia postirradiation
    Beamish, H
    Williams, R
    Chen, P
    Lavin, MF
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) : 20486 - 20493
  • [4] Caffeine inhibits the checkpoint kinase ATM
    Blasina, A
    Price, BD
    Turenne, GA
    McGowan, CH
    [J]. CURRENT BIOLOGY, 1999, 9 (19) : 1135 - 1138
  • [5] A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase
    Blasina, A
    Van de Weyer, I
    Laus, MC
    Luyten, WHML
    Parker, AE
    McGowan, CH
    [J]. CURRENT BIOLOGY, 1999, 9 (01) : 1 - 10
  • [6] A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage
    Brown, AL
    Lee, CH
    Schwarz, JK
    Mitiku, N
    Piwnica-Worms, H
    Chung, JH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) : 3745 - 3750
  • [7] Activation of the ATM kinase by ionizing radiation and phosphorylation of p53
    Canman, CE
    Lim, DS
    Cimprich, KA
    Taya, Y
    Tamai, K
    Sakaguchi, K
    Appella, E
    Kastan, MB
    Siliciano, JD
    [J]. SCIENCE, 1998, 281 (5383) : 1677 - 1679
  • [8] Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway
    Chaturvedi, P
    Eng, WK
    Zhu, Y
    Mattern, MR
    Mishra, R
    Hurle, MR
    Zhang, XL
    Annan, RS
    Lu, Q
    Faucette, LF
    Scott, GF
    Li, XT
    Carr, SA
    Johnson, RK
    Winkler, JD
    Zhou, BBS
    [J]. ONCOGENE, 1999, 18 (28) : 4047 - 4054
  • [9] Dalal SN, 1999, MOL CELL BIOL, V19, P4465
  • [10] THE CDC25 PROTEIN CONTAINS AN INTRINSIC PHOSPHATASE-ACTIVITY
    DUNPHY, WG
    KUMAGAI, A
    [J]. CELL, 1991, 67 (01) : 189 - 196