ErbB2 potentiates breast tumor proliferation through modulation of p27Kip1-Cdk2 complex formation:: Receptor overexpression does not determine growth dependency

被引:263
作者
Lane, HA [1 ]
Beuvink, I [1 ]
Motoyama, AB [1 ]
Daly, JM [1 ]
Neve, RM [1 ]
Hynes, NE [1 ]
机构
[1] Friedrich Miescher Inst, CH-4058 Basel, Switzerland
关键词
D O I
10.1128/MCB.20.9.3210-3223.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Overexpression of the ErbB2 receptor, a major component of the ErbB receptor signaling network, contributes to the development of a number of human cancers, ErbB2 presents itself therefore, as a target for antibody-mediated therapies. In this respect, anti-ErbB2 monoclonal antibody 4D5 specifically inhibits the growth of tumor cells overexpressing ErbB2. We have analyzed the effect of 4D5-mediated ErbB2 inhibition on the cell cycle of the breast tumor fell line BT474. 4D5 treatment of BT474 cells resulted in a G(1) arrest, preceded by rapid dephosphorylation of ErbB2, inhibition of cytoplasmic signal transduction pathways, accumulation of the cyclin-dependent kinase inhibitor p27(Kip1), and inactivation of cyclin-Cdk2 complexes. Time courses demonstrated that 4D5 treatment redirects p27(Kip1) onto Cdk2 complexes, an event preceding increased p27(Kip1) expression; this correlates with the downregulation of c-Myc and D-type cyclins (proteins involved in p27(Kip1) sequestration) and the loss of p27(Kip1) from Cdk4 complexes. Similar events were observed in ErbB2-overexpressing SKBR3 cells, which exhibited reduced proliferation in response to 4D5 treatment. Here, p27(Kip1) redistribution resulted in partial Cdk2 inactivation, consistent with a G1 accumulation. Moreover, p27(Kip1) protein levels remained constant. Antisense-mediated inhibition of p27(Kip1) expression in 4D5-treated BT474 cells Further demonstrated that in the absence of p27(Kip1) accumulation, p27(Kip1) redirection onto Cdk2 complexes is sufficient to inactivate Cdk2 and establish the G(1) block. These data suggest that ErbB2 overexpression leads to potentiation of cyclin E-Cdk2 activity through regulation of p27(Kip1) sequestration proteins, thus deregulating the G(1)/S transition. Moreover, through comparison with an ErbB2-overexpressing cell line insensitive to 4D5 treatment, we demonstrate the specificity of these cell cycle events and show that ErbB2 overexpression alone is insufficient to determine the cellular response to receptor inhibition.
引用
收藏
页码:3210 / 3223
页数:14
相关论文
共 88 条
[1]  
ALIMANDI M, 1995, ONCOGENE, V10, P1813
[2]  
Amati B., 1998, FRONT BIOSCI, V3, pd250, DOI DOI 10.2741/A239
[3]   Phase II study of weekly intravenous recombinant humanized Anti-p185(HER2) monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast [J].
Baselga, J ;
Tripathy, D ;
Mendelsohn, J ;
Baughman, S ;
Benz, CC ;
Dantis, L ;
Sklarin, NT ;
Seidman, AD ;
Hudis, CA ;
Moore, J ;
Rosen, PP ;
Twaddell, T ;
Henderson, IC ;
Norton, L .
JOURNAL OF CLINICAL ONCOLOGY, 1996, 14 (03) :737-744
[4]  
BEERLI RR, 1995, MOL CELL BIOL, V15, P6496
[5]   Epidermal growth factor-related peptides activate distinct subsets of ErbB receptors and differ in their biological activities [J].
Beerli, RR ;
Hynes, NE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (11) :6071-6076
[6]  
BERGER MS, 1988, CANCER RES, V48, P1238
[7]   Repression of c-Myc responsive genes in cycling cells causes G(1) arrest through reduction of cyclin E CDK2 kinase activity [J].
Berns, K ;
Hijmans, EM ;
Bernards, R .
ONCOGENE, 1997, 15 (11) :1347-1356
[8]   Differential interaction of the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1) with cyclin A-Cdk2 and cyclin D2-Cdk4 [J].
Blain, SW ;
Montalvo, E ;
Massague, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (41) :25863-25872
[9]  
Bodey B, 1997, ANTICANCER RES, V17, P1319
[10]   Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27 [J].
Bouchard, C ;
Thieke, K ;
Maier, A ;
Saffrich, R ;
Hanley-Hyde, J ;
Ansorge, W ;
Reed, S ;
Sicinski, P ;
Bartek, J ;
Eilers, M .
EMBO JOURNAL, 1999, 18 (19) :5321-5333