Solution Processing of Chalcogenide Semiconductors via Dimensional Reduction

被引:206
作者
Mitzi, David B. [1 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
PHASE-CHANGE MATERIAL; THIN-FILMS; SOLAR-CELLS; CRYSTAL-STRUCTURE; DEPOSITION; TRANSISTORS; INDIUM; CHEMISTRY; CRYSTALLIZATION; NANOCRYSTALS;
D O I
10.1002/adma.200802027
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quest to develop thin-film solution processing approaches that offer low-cost and preferably low-temperature deposition, while simultaneously providing quality semiconductor characteristics, has become an important thrust within the materials community. While inorganic compounds offer the potential for outstanding electronic properties relative to organic systems, the very nature of these materials rendering them good electronic materials-namely strong covalent bonding-also leads to poor solubility. This review presents a "dimensional reduction" approach to improving the solubility of metal chalcogenide semiconductors, which generally involves breaking the extended framework up into discrete metal chalcogenide anions separated by small and volatile cationic species. The resulting soluble precursor may be solution-processed into thin-film form and thermally decomposed to yield the desired semiconductor. Several applications of this principle to the solution deposition of high-performance active layers for transistors (channel mobility >10 cm(2) V-1 s(-1)), solar cells (power conversion efficiency of as 12%), and fundamental materials study will be presented using hydrazine as the deposition solvent.
引用
收藏
页码:3141 / 3158
页数:18
相关论文
共 103 条
[1]  
AUDRIETH LF, 1951, CHEM HYDROZINE
[2]   Nanocomposite materials for optical applications [J].
Beecroft, LL ;
Ober, CK .
CHEMISTRY OF MATERIALS, 1997, 9 (06) :1302-1317
[3]   Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles [J].
Beek, Waldo J. E. ;
Wienk, Martijn M. ;
Janssen, Rene A. J. .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (08) :1112-1116
[4]  
Bera T.K., 2008, ANGEW CHEM INT EDIT, V120, P7946
[5]   The crystal structures of synthetic KSb5S8 and (Tl0.598, K0.402)Sb5S8 and their relation to parapierrotite (TlSb5S8) [J].
Berlepsch, P ;
Miletich, R ;
Armbruster, T .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1999, 214 (01) :57-63
[6]   15.4% CuIn1-xGaxSe2-based photovoltaic cells from solution-based precursor films [J].
Bhattacharya, RN ;
Hiltner, JF ;
Batchelor, W ;
Contreras, MA ;
Noufi, RN ;
Sites, JR .
THIN SOLID FILMS, 2000, 361 :396-399
[7]   New thermoelectric components using microsystem technologies [J].
Böttner, H ;
Nurnus, J ;
Gavrikov, A ;
Kühner, G ;
Jägle, M ;
Künzel, C ;
Eberhard, D ;
Plescher, G ;
Schubert, A ;
Schlereth, KH .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2004, 13 (03) :414-420
[8]   Controlling growth chemistry and morphology of single-bath electrodeposited Cu(In,Ga)Se2 thin films for photovoltaic application [J].
Calixto, ME ;
Dobson, KD ;
McCandless, BE ;
Birkmire, RW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (06) :G521-G528
[9]   Polysilicon thin film transistors fabricated on low temperature plastic substrates [J].
Carey, PG ;
Smith, PM ;
Theiss, SD ;
Wickboldt, P .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1999, 17 (04) :1946-1949
[10]   Structural and electronic properties of amorphous and polycrystalline In2Se3 films [J].
Chaiken, A ;
Nauka, K ;
Gibson, GA ;
Lee, H ;
Yang, CC ;
Wu, J ;
Ager, JW ;
Yu, KM ;
Walukiewicz, W .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (04) :2390-2397