A non homogeneous riemann solver for shallow water and two phase flows

被引:19
作者
Benkhaldoun, Fayssal [1 ]
Quivy, Laure [1 ]
机构
[1] ENS Cachan, CMLA, F-94235 Cachan, France
关键词
non homogeneous systems; finite volumes; SRNHR scheme;
D O I
10.1007/s10494-006-9027-5
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work we consider a two steps finite volume scheme, recently developed to solve nonhomogeneous systems. The first step of the scheme depends on a diffusion control parameter which we modulate, using the limiters theory. Results on Shallow water equations and two phase flows are presented.
引用
收藏
页码:391 / 402
页数:12
相关论文
共 14 条
[1]   Efficient numerical approximation of compressible multi-material flow for unstructured meshes [J].
Abgrall, R ;
Nkonga, B ;
Saurel, R .
COMPUTERS & FLUIDS, 2003, 32 (04) :571-605
[2]   Exact solutions to the Riemann problem of the shallow water equations with a bottom step [J].
Alcrudo, F ;
Benkhaldoun, F .
COMPUTERS & FLUIDS, 2001, 30 (06) :643-671
[3]   A well-balanced positivity preserving "second-order" scheme for shallow water flows on unstructured meshes [J].
Audusse, E ;
Bristeau, MO .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 206 (01) :311-333
[4]  
BENKHALDOUN F, 2002, ANAL VALIDATION NEW, P269
[5]  
BOUCHUT F, 2004, SERIES FRONTIERS MAT
[6]  
CHINNAYYA A, 2004, WELL BALANCED NUMERI
[7]   On the numerical solution to two fluid models via a cell centered finite volume method [J].
Ghidaglia, JM ;
Kumbaro, A ;
Le Coq, G .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2001, 20 (06) :841-867
[8]  
LEVEQUE RJ, 1992, LECT MATH ETH ZURICH, P214
[9]  
Mohamed K., 2005, THESIS U PARIS 13
[10]  
RANSOM VH, 1987, MULTIPHASE SCI TECHN, V3