Fractal structures of normal and anomalous diffusion in nonlinear nonhyperbolic dynamical systems

被引:31
作者
Korabel, N [1 ]
Klages, R [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
D O I
10.1103/PhysRevLett.89.214102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A paradigmatic nonhyperbolic dynamical system exhibiting deterministic diffusion is the smooth nonlinear climbing sine map. We find that this map generates fractal hierarchies of normal and anomalous diffusive regions as functions of the control parameter. The measure of these self-similar sets is positive, parameter dependent, and in case of normal diffusion it shows a fractal diffusion coefficient. By using a Green-Kubo formula we link these fractal structures to the nonlinear microscopic dynamics in terms of fractal Takagi-like functions.
引用
收藏
页码:214102 / 214102
页数:4
相关论文
共 53 条
[1]   Statistical approach to nonhyperbolic chaotic systems [J].
Alonso, D ;
MacKernan, D ;
Gaspard, P ;
Nicolis, G .
PHYSICAL REVIEW E, 1996, 54 (03) :2474-2478
[2]   DIFFUSIVE DYNAMICS AND PERIODIC-ORBITS OF DYNAMIC-SYSTEMS [J].
ARTUSO, R .
PHYSICS LETTERS A, 1991, 160 (06) :528-530
[3]   MICROWAVE-INDUCED DEVILS STAIRCASE STRUCTURE AND CHAOTIC BEHAVIOR IN CURRENT-FED JOSEPHSON-JUNCTIONS [J].
BENJACOB, E ;
BRAIMAN, Y ;
SHAINSKY, R ;
IMRY, Y .
APPLIED PHYSICS LETTERS, 1981, 38 (10) :822-824
[4]   CATIONIC SHORT-RANGE ORDER IN HOLLANDITE K1.54MG0.77T7.23O16 - EVIDENCE FOR IMPORTANCE OF ION-ION INTERACTIONS IN SUPERIONIC CONDUCTORS [J].
BEYELER, HU .
PHYSICAL REVIEW LETTERS, 1976, 37 (23) :1557-1560
[5]   Phase diffusion in a chaotic pendulum [J].
Blackburn, JA ;
GronbechJensen, N .
PHYSICAL REVIEW E, 1996, 53 (04) :3068-3072
[6]   TRANSITION TO CHAOS BY INTERACTION OF RESONANCES IN DISSIPATIVE SYSTEMS .2. JOSEPHSON-JUNCTIONS, CHARGE-DENSITY WAVES, AND STANDARD MAPS [J].
BOHR, T ;
BAK, P ;
JENSEN, MH .
PHYSICAL REVIEW A, 1984, 30 (04) :1970-1981
[7]   SUBHARMONIC SHAPIRO STEPS AND DEVILS-STAIRCASE BEHAVIOR IN DRIVEN CHARGE-DENSITY-WAVE SYSTEMS [J].
BROWN, SE ;
MOZURKEWICH, G ;
GRUNER, G .
PHYSICAL REVIEW LETTERS, 1984, 52 (25) :2277-2280
[8]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[9]   ON BIFURCATIONS AND TRANSITION TO CHAOS IN A JOSEPHSON JUNCTION [J].
CIRILLO, M ;
PEDERSEN, NF .
PHYSICS LETTERS A, 1982, 90 (03) :150-152
[10]   GENERAL-APPROACH TO DIFFUSION OF PERIODICALLY KICKED CHARGES IN A MAGNETIC-FIELD [J].
DANA, I ;
AMIT, M .
PHYSICAL REVIEW E, 1995, 51 (04) :R2731-R2734