Confidence balls in Gaussian regression

被引:33
作者
Baraud, Y [1 ]
机构
[1] Ecole Normale Super, Dept Math & Applicat, CNRS, UMR 8553, F-75230 Paris 05, France
关键词
confidence ball; nonparametric regression; hypothesis testing; estimation;
D O I
10.1214/009053604000000085
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Starting from the observation of an R(n)-Gaussian vector of mean f and covariance matrix sigma(2)I(n) (I(n) is the identity matrix), we propose a method for building a Euclidean confidence ball around f, with prescribed probability of coverage. For each n, we describe its nonasymptotic property and show its optimality with respect to some criteria.
引用
收藏
页码:528 / 551
页数:24
相关论文
共 8 条
[1]  
Baraud Y, 2002, BERNOULLI, V8, P577
[2]  
Beran R, 1998, ANN STAT, V26, P1826
[3]   Confidence sets centered at C-p-estimators [J].
Beran, R .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1996, 48 (01) :1-15
[4]   An alternative point of view on Lepski's method [J].
Birgé, L .
STATE OF THE ART IN PROBABILITY AND STATISTICS: FESTSCHRIFT FOR WILLEM R VAN ZWET, 2001, 36 :113-133
[5]   AN ANALYSIS OF BAYESIAN-INFERENCE FOR NONPARAMETRIC REGRESSION [J].
COX, DD .
ANNALS OF STATISTICS, 1993, 21 (02) :903-923
[6]   Random rates in anisotropic regression [J].
Hoffmann, M ;
Lepski, O .
ANNALS OF STATISTICS, 2002, 30 (02) :325-358
[7]  
LEPSKI OV, 1999, MATH METHODS STAT, V8, P441
[8]   HONEST CONFIDENCE-REGIONS FOR NONPARAMETRIC REGRESSION [J].
LI, KC .
ANNALS OF STATISTICS, 1989, 17 (03) :1001-1008