Mantra 2.0: an online collaborative resource for drug mode of action and repurposing by network analysis

被引:65
作者
Carrella, Diego [1 ]
Napolitano, Francesco [1 ]
Rispoli, Rossella [1 ]
Miglietta, Mario [2 ]
Carissimo, Annamaria [1 ]
Cutillo, Luisa [1 ,3 ]
Sirci, Francesco [1 ]
Gregoretti, Francesco [4 ]
Di Bernardo, Diego [1 ,5 ]
机构
[1] Telethon Inst Genet & Med, I-80131 Naples, Italy
[2] Interactive SRL, I-83100 Avellino, Italy
[3] Univ Napoli Parthenope, Dip Studi Aziendali & Quantitat, I-80132 Naples, Italy
[4] CNR, ICAR, Inst High Performance Comp, I-80131 Naples, Italy
[5] Univ Naples Federico II, Dept Elect Engn & Informat Technol, I-80125 Naples, Italy
关键词
D O I
10.1093/bioinformatics/btu058
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Elucidation of molecular targets of a compound [mode of action (MoA)] and its off-targets is a crucial step in drug development. We developed an online collaborative resource (MANTRA 2.0) that supports this process by exploiting similarities between drug-induced transcriptional profiles. Drugs are organized in a network of nodes (drugs) and edges (similarities) highlighting 'communities' of drugs sharing a similar MoA. A user can upload gene expression profiles before and after drug treatment in one or multiple cell types. An automated processing pipeline transforms the gene expression profiles into a unique drug 'node' embedded in the drug-network. Visual inspection of the neighbouring drugs and communities helps in revealing its MoA and to suggest new applications of known drugs (drug repurposing). MANTRA 2.0 allows storing and sharing user-generated network nodes, thus making MANTRA 2.0 a collaborative ever-growing resource.
引用
收藏
页码:1787 / 1788
页数:2
相关论文
共 7 条
  • [1] A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
    Baldi, P
    Long, AD
    [J]. BIOINFORMATICS, 2001, 17 (06) : 509 - 519
  • [2] affy -: analysis of Affymetrix GeneChip data at the probe level
    Gautier, L
    Cope, L
    Bolstad, BM
    Irizarry, RA
    [J]. BIOINFORMATICS, 2004, 20 (03) : 307 - 315
  • [3] Medusa: a simple tool for interaction graph analysis
    Hooper, SD
    Bork, P
    [J]. BIOINFORMATICS, 2005, 21 (24) : 4432 - 4433
  • [4] Discovery of drug mode of action and drug repositioning from transcriptional responses
    Iorio, Francesco
    Bosotti, Roberta
    Scacheri, Emanuela
    Belcastro, Vincenzo
    Mithbaokar, Pratibha
    Ferriero, Rosa
    Murino, Loredana
    Tagliaferri, Roberto
    Brunetti-Pierri, Nicola
    Isacchi, Antonella
    di Bernardo, Diego
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (33) : 14621 - 14626
  • [5] The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease
    Lamb, Justin
    Crawford, Emily D.
    Peck, David
    Modell, Joshua W.
    Blat, Irene C.
    Wrobel, Matthew J.
    Lerner, Jim
    Brunet, Jean-Philippe
    Subramanian, Aravind
    Ross, Kenneth N.
    Reich, Michael
    Hieronymus, Haley
    Wei, Guo
    Armstrong, Scott A.
    Haggarty, Stephen J.
    Clemons, Paul A.
    Wei, Ru
    Carr, Steven A.
    Lander, Eric S.
    Golub, Todd R.
    [J]. SCIENCE, 2006, 313 (5795) : 1929 - 1935
  • [6] Cytoscape: A software environment for integrated models of biomolecular interaction networks
    Shannon, P
    Markiel, A
    Ozier, O
    Baliga, NS
    Wang, JT
    Ramage, D
    Amin, N
    Schwikowski, B
    Ideker, T
    [J]. GENOME RESEARCH, 2003, 13 (11) : 2498 - 2504
  • [7] Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
    Subramanian, A
    Tamayo, P
    Mootha, VK
    Mukherjee, S
    Ebert, BL
    Gillette, MA
    Paulovich, A
    Pomeroy, SL
    Golub, TR
    Lander, ES
    Mesirov, JP
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (43) : 15545 - 15550