Resistance gene analogs associated with Fusarium head blight resistance in wheat

被引:14
作者
Guo, Pei-Guo
Bai, Gui-Hua
Li, Rong-Hua
Shaner, Gregory
Baum, Michael
机构
[1] USDA, ARS, Plant Sci & Entomol Res Unit, Manhattan, KS 66506 USA
[2] Oklahoma State Univ, Dept Plant & Soil Sci, Stillwater, OK 74078 USA
[3] Guangzhou Univ, Coll Life Sci, Guangzhou, Peoples R China
[4] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA
[5] ICARDA, Aleppo, Syria
关键词
Triticum aestivum; resistance gene analog; wheat scab; QTL tagging; sequence tagged site;
D O I
10.1007/s10681-006-9153-0
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Fusarium head blight (FHB) is one of the most destructive diseases in wheat. Identification of resistance gene analogs (RGAs) may provide candidate genes for cloning of FHB resistance genes and molecular markers for marker-assisted improvement of wheat FHB resistance. To identify potential RGAs associated with FHB resistance in wheat, 18 primer pairs of RGAs were screened between two parents (Ning7840 and Clark) and seven informative RGA primer combinations were analyzed in their recombinant inbred lines (RILs). Five PCR products amplified from three primer combinations showed significant association with FHB resistance, and their sequences are similar to the gene families of RGAs. Three of them (RGA14-310, RGA16-462, RGA18-356) were putatively assigned to chromosome 1AL and explained 12.73%, 5.57% and 5.9% of the phenotypic variation for FHB response in the F-7 population, and 10.37%, 3.37% and 4.53% in F-10 population, respectively; suggesting that these RGAs may play a role in enhancing FHB resistance in wheat. Analysis of nucleotide sequence motifs demonstrated that all the RGA markers contain a heat shock factor that initiates the production of heat shock proteins. A sequence tagged site (STS) marker (FHBSTS1A-160) was successfully converted from RGA18-356, and validated in fourteen other cultivars. Significant interaction between the quantitative trait locus (QTL) on 1AL and the QTL on 3BS was detected. The marker FHBSTS1A-160 in combination with markers linked to the major QTL on 3BS could be used in marker-assisted selection (MAS) for enhanced FHB resistance in wheat.
引用
收藏
页码:251 / 261
页数:11
相关论文
共 42 条
[1]   Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana [J].
Aarts, MGM ;
Hekkert, BT ;
Holub, EB ;
Beynon, JL ;
Stiekema, WJ ;
Pereira, A .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1998, 11 (04) :251-258
[2]   DNA markers for Fusarium head blight resistance QTLs its two wheat populations [J].
Anderson, JA ;
Stack, RW ;
Liu, S ;
Waldron, BL ;
Fjeld, AD ;
Coyne, C ;
Moreno-Sevilla, B ;
Fetch, JM ;
Song, QJ ;
Cregan, PB ;
Frohberg, RC .
THEORETICAL AND APPLIED GENETICS, 2001, 102 (08) :1164-1168
[3]  
BAI GH, 1994, PLANT DIS, V78, P760, DOI 10.1094/PD-78-0760
[4]   Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat [J].
Bai, GH ;
Kolb, FL ;
Shaner, G ;
Domier, LL .
PHYTOPATHOLOGY, 1999, 89 (04) :343-348
[5]   Management and resistance in wheat and barley to Fusarium head blight [J].
Bai, GH ;
Shaner, G .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2004, 42 :135-161
[6]   Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat [J].
Bai, GH ;
Plattner, R ;
Desjardins, A ;
Kolb, F .
PLANT BREEDING, 2001, 120 (01) :1-6
[7]   RPS2 OF ARABIDOPSIS-THALIANA - A LEUCINE-RICH REPEAT CLASS OF PLANT-DISEASE RESISTANCE GENES [J].
BENT, AF ;
KUNKEL, BN ;
DAHLBECK, D ;
BROWN, KL ;
SCHMIDT, R ;
GIRAUDAT, J ;
LEUNG, J ;
STASKAWICZ, BJ .
SCIENCE, 1994, 265 (5180) :1856-1860
[8]   Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple, codominant, PCR-based marker form [J].
Bradeen, JM ;
Simon, PW .
THEORETICAL AND APPLIED GENETICS, 1998, 97 (5-6) :960-967
[9]   Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance) [J].
Buerstmayr, H ;
Lemmens, M ;
Hartl, L ;
Doldi, L ;
Steiner, B ;
Stierschneider, M ;
Ruckenbauer, P .
THEORETICAL AND APPLIED GENETICS, 2002, 104 (01) :84-91
[10]   High-resolution genetic mapping of the leaf stripe resistance gene Rdg2a in barley [J].
Bulgarelli, D ;
Collins, NC ;
Tacconi, G ;
Dellaglio, E ;
Brueggeman, R ;
Kleinhofs, A ;
Stanca, AM ;
Valè, G .
THEORETICAL AND APPLIED GENETICS, 2004, 108 (07) :1401-1408