Stability analysis with Popov multipliers and integral quadratic constraints

被引:34
作者
Jonsson, U
机构
[1] Department of Automatic Control, Lund Institute of Technology, Lund
关键词
stability; multipliers; Popov criterion;
D O I
10.1016/S0167-6911(97)00018-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is shown that a general form of Popov multipliers can be used in stability analysis based on integral quadratic constraints (IQC). The Popov multiplier is nonproper and a condition that the nominal plant is strictly proper will be imposed in order to ensure boundedness of the IQC corresponding to the Popov multiplier. A consequence of our main result is that the classical Popov criterion can be combined with a stability criterion for slope restricted nonlinearities developed by Zames and Falb. An example shows that the combination of these two criteria is useful in applications. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 1971, ANAL FEEDBACK SYSTEM
[2]   A POPOV CRITERION FOR UNCERTAIN LINEAR-MULTIVARIABLE SYSTEMS [J].
BERNSTEIN, DS ;
HADDAD, WM ;
SPARKS, AG .
AUTOMATICA, 1995, 31 (07) :1061-1064
[3]  
CHO YS, 1968, IEEE T AUTOMAT CONTR, VAC13, P413
[4]  
Desoer CA., 1975, FEEDBACK SYSTEMS INP
[5]  
FERON E, 1995, P 3 EUR CONTR C, V1, P141
[6]   PARAMETER-DEPENDENT LYAPUNOV FUNCTIONS AND THE POPOV CRITERION IN ROBUST ANALYSIS AND SYNTHESIS [J].
HADDAD, WM ;
BERNSTEIN, DS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (03) :536-543
[7]  
MEGRETSKI A, 1993, P IFAC C SYDN AUSTR, P399
[8]  
MEGRETSKI A, 1997, IN PRESS IEEE T AUTO
[9]  
Narendra K. S., 1973, FREQUENCY DOMAIN CRI
[10]  
RANTZER A, 1994, P C DEC CONTR, V3, P3062