Variational method: How it can generate false instabilities

被引:30
作者
Kaup, DJ [1 ]
Lakoba, TI [1 ]
机构
[1] CLARKSON UNIV,DEPT PHYS,POTSDAM,NY 13699
关键词
D O I
10.1063/1.531574
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When the variational method is applied to nonlinear evolution equations for determining solitary wave dynamics, it is possible for the method to predict the pulse to be unstable when in fact it is stable. We determine the necessary conditions for this to occur as well as give sufficient conditions for avoiding such false instabilities. We also discuss the general problem of applying the method to a general evolution equation. (C) 1996 American Institute of Physics.
引用
收藏
页码:3442 / 3462
页数:21
相关论文
共 13 条
[1]   VARIATIONAL APPROACH TO NON-LINEAR PULSE-PROPAGATION IN OPTICAL FIBERS [J].
ANDERSON, D .
PHYSICAL REVIEW A, 1983, 27 (06) :3135-3145
[2]  
BARASHENKOV IV, 1983, ACTA PHYS AUSTRIACA, V55, P155
[3]  
Gantmakher F. R., 1960, The Theory of Matrices, V1
[4]  
Hildebrand FB., 1992, Methods of Applied Mathematics, V2nd ed.
[5]   INTERNAL DYNAMICS OF A VECTOR SOLITON IN A NONLINEAR-OPTICAL FIBER [J].
KAUP, DJ ;
MALOMED, BA ;
TASGAL, RS .
PHYSICAL REVIEW E, 1993, 48 (04) :3049-3053
[6]   PERTURBATION-THEORY FOR SOLITONS IN OPTICAL FIBERS [J].
KAUP, DJ .
PHYSICAL REVIEW A, 1990, 42 (09) :5689-5694
[7]   The squared eigenfunctions of the massive Thirring model in laboratory coordinates [J].
Kaup, DJ ;
Lakoba, TI .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (01) :308-323
[8]   COMPLETE INTEGRABILITY OF 2-DIMENSIONAL CLASSICAL THIRRING MODEL [J].
KUZNETSOV, EA ;
MIKHAILOV, AV .
THEORETICAL AND MATHEMATICAL PHYSICS, 1977, 30 (03) :193-200
[9]   THRESHOLDS AND GROWTH TIMES OF SOME NON-LINEAR FIELD-EQUATIONS [J].
LAEDKE, EW ;
SPATSCHEK, KH .
PHYSICA D, 1982, 5 (2-3) :227-242
[10]   VARIATIONAL FORMULATION FOR THE EVOLUTION OF A DEEP-WATER WAVETRAIN IN 2 SPACE DIMENSIONS [J].
LAEDKE, EW ;
SPATSCHEK, KH .
PHYSICS OF FLUIDS, 1985, 28 (08) :2315-2316