Green's function for a two-dimensional exponentially graded elastic medium

被引:71
作者
Chan, YS
Gray, LJ
Kaplan, T
Paulino, GH
机构
[1] Univ Illinois, Dept Civil & Environm Engn, Newmark Lab, Urbana, IL 61801 USA
[2] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2004年 / 460卷 / 2046期
关键词
functionally graded materials; Green's function; boundary-element methods;
D O I
10.1098/rspa.2003.1220
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The free-space Green function for a two-dimensional exponentially graded elastic medium is derived. The shear modulus It is assumed to be an exponential function of the Cartesian coordinates (x, y), i.e. mu equivalent to mu(x, y) = mu(0)e(2(beta1x+beta2y)), where mu(0), beta(1) and beta(2) are material constants, and the Poisson ratio is assumed constant. The Green function is shown to consist of a singular part, involving modified Bessel functions. and a non-singular term. The non-singular component is expressed in terms of one-dimensional Fourier-type integrals that can be computed by the fast Fourier transform.
引用
收藏
页码:1689 / 1706
页数:18
相关论文
共 27 条
[1]  
Banerjee PK., 1994, BOUNDARY ELEMENT MET
[2]  
BENMENAHERN A, 1981, SEISMIC WAVES SOURCE
[3]  
Bonnet M., 1995, Boundary integral equation methods for solids and fluids
[4]  
Brigham E.O., 1974, FAST FOURIER TRANSFO
[5]   AN ALGORITHM FOR MACHINE CALCULATION OF COMPLEX FOURIER SERIES [J].
COOLEY, JW ;
TUKEY, JW .
MATHEMATICS OF COMPUTATION, 1965, 19 (90) :297-&
[6]  
CRUSE TA, 1988, BOUNDARY ELEMENT ANA
[7]  
DELALE F, 1983, T ASME J APPL MECH, V19, P609
[8]  
EISCHEN JW, 1987, INT J FRACTURE, V34, P3
[9]  
Erdelyi A., 1954, TABLES INTEGRAL TRAN, VII
[10]   FRACTURE-MECHANICS OF FUNCTIONALLY GRADED MATERIALS [J].
ERDOGAN, F .
COMPOSITES ENGINEERING, 1995, 5 (07) :753-770