Kerr-Schild approach to the boosted Kerr solution

被引:16
作者
Burinskii, A
Magli, G
机构
[1] Russian Acad Sci, NSI, Grav Res Grp, Moscow 113191, Russia
[2] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
D O I
10.1103/PhysRevD.61.044017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using a complex representation of the Debney-Kerr-Schild solutions and the Kerr theorem we analyze the boosted Kerr geometries and give the exact and explicit expressions for the metrics, the principal null congruences, the coordinate systems and the location of the singularities for an arbitrary value and orientation of the boost with respect to the angular momentum. In the limiting, ultrarelativistic case we obtain lightlike solutions possessing diverging and twisting principal null congruences and having, contrary to the known pp-wave limiting solutions, a nonzero value of the total angular momentum. The implications of the above results in various related fields are discussed.
引用
收藏
页数:6
相关论文
共 22 条
[1]  
Aichelburg P. C., 1971, GEN RELAT GRAVIT, V2, P303, DOI DOI 10.1007/BF00758149
[2]   THE ULTRARELATIVISTIC KERR GEOMETRY AND ITS ENERGY-MOMENTUM TENSOR [J].
BALASIN, H ;
NACHBAGAUER, H .
CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (03) :707-713
[3]   Boosting the Kerr geometry in an arbitrary direction [J].
Balasin, H ;
Nachbagauer, H .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (04) :731-737
[4]  
Burinskii A, 1997, ANN ISR PHY, V13, P296
[5]  
BURINSKII A, GRQC9501012
[6]   SOME PROPERTIES OF THE KERR SOLUTION TO LOW-ENERGY STRING THEORY [J].
BURINSKII, AY .
PHYSICAL REVIEW D, 1995, 52 (10) :5826-5831
[7]   Boosted three-dimensional black-hole evolutions with singularity excision [J].
Cook, GB ;
Huq, MF ;
Klasky, SA ;
Scheel, MA ;
Abrahams, AM ;
Anderson, A ;
Anninos, P ;
Baumgarte, TW ;
Bishop, NT ;
Brandt, SR ;
Browne, JC ;
Camarda, K ;
Choptuik, MW ;
Correll, RR ;
Evans, CR ;
Finn, LS ;
Fox, GC ;
Gomez, R ;
Haupt, T ;
Kidder, LE ;
Laguna, P ;
Landry, W ;
Lehner, L ;
Lenaghan, J ;
Marsa, RL ;
Masso, J ;
Matzner, RA ;
Mitra, S ;
Papadopoulos, P ;
Parashar, M ;
Rezzolla, L ;
Rupright, ME ;
Saied, F ;
Saylor, PE ;
Seidel, E ;
Shapiro, SL ;
Shoemaker, D ;
Smarr, L ;
Suen, WM ;
Szilagyi, B ;
Teukolsky, SA ;
van Putten, MHPM ;
Walker, P ;
Winicour, J ;
York, JW .
PHYSICAL REVIEW LETTERS, 1998, 80 (12) :2512-2516
[8]   CONVENTIONAL PROOF OF KERRS THEOREM [J].
COX, D ;
FLAHERTY, EJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 47 (01) :75-79
[9]   SOLUTIONS OF EINSTEIN AND EINSTEIN-MAXWELL EQUATIONS [J].
DEBNEY, GC ;
KERR, RP ;
SCHILD, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (10) :1842-+
[10]   THE GRAVITATIONAL SHOCK-WAVE OF A MASSLESS PARTICLE [J].
DRAY, T ;
THOOFT, G .
NUCLEAR PHYSICS B, 1985, 253 (01) :173-188