Nanothorn electrodes for ionic polymer-metal composite artificial muscles

被引:53
作者
Palmre, Viljar [1 ,2 ,3 ]
Pugal, David [2 ]
Kim, Kwang J. [3 ]
Leang, Kam K. [4 ]
Asaka, Kinji [5 ]
Aabloo, Alvo [6 ]
机构
[1] Univ Nevada, Dept Chem & Mat Engn, Reno, NV 89557 USA
[2] Univ Nevada, Dept Mech Engn, Act Mat & Proc Lab, Reno, NV 89557 USA
[3] Univ Nevada, Dept Mech Engn, Electroact Autonomous Syst Lab, Las Vegas, NV 89154 USA
[4] Univ Utah, Dept Mech Engn, Electroact Autonomous Syst Lab, Salt Lake City, UT 84112 USA
[5] Natl Inst Adv Ind Sci & Technol, Hlth Res Inst, Ikeda, Osaka, Japan
[6] Univ Tartu, Inst Technol, Intelligent Mat & Syst Lab, Tartu, Estonia
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
关键词
ELECTROACTIVE POLYMERS; ACTUATORS; FABRICATION; PERFORMANCE; RESISTANCE;
D O I
10.1038/srep06176
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ionic polymer-metal composites (IPMCs) have recently received tremendous interest as soft biomimetic actuators and sensors in various bioengineering and human affinity applications, such as artificial muscles and actuators, aquatic propulsors, robotic end-effectors, and active catheters. Main challenges in developing biomimetic actuators are the attainment of high strain and actuation force at low operating voltage. Here we first report a nanostructured electrode surface design for IPMC comprising platinum nanothorn assemblies with multiple sharp tips. The newly developed actuator with the nanostructured electrodes shows a new way to achieve highly enhanced electromechanical performance over existing flat-surfaced electrodes. We demonstrate that the formation and growth of the nanothorn assemblies at the electrode interface lead to a dramatic improvement (3- to 5-fold increase) in both actuation range and blocking force at low driving voltage (1-3 V). These advances are related to the highly capacitive properties of nanothorn assemblies, increasing significantly the charge transport during the actuation process.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Direct assembly process: a novel fabrication technique for large strain ionic polymer transducers [J].
Akle, Barbar J. ;
Bennett, Matthew D. ;
Leo, Donald J. ;
Wiles, Kenton B. ;
McGrath, James E. .
JOURNAL OF MATERIALS SCIENCE, 2007, 42 (16) :7031-7041
[2]   Response characterization of electroactive polymers as mechanical sensors [J].
Alici, Gursel ;
Spinks, Geoffrey M. ;
Madden, John D. ;
Wu, Yanzhe ;
Wallace, Gordon G. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2008, 13 (02) :187-196
[3]   Bending of polyelectrolyte membrane platinum composites by electric stimuli Part II. Response kinetics [J].
Asaka, K ;
Oguro, K .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2000, 480 (1-2) :186-198
[4]  
Bar-Cohen Y, 2006, J ADV MATER-COVINA, V38, P3
[5]   A method to characterize the deformation of an IPMC sensing membrane [J].
Bonomo, C ;
Fortuna, L ;
Giannone, P ;
Graziani, S .
SENSORS AND ACTUATORS A-PHYSICAL, 2005, 123-24 :146-154
[6]  
Carpi F., 2009, Biomedical Applications of Electroactive Polymer Actuators
[7]   Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications [J].
Chen, Aicheng ;
Holt-Hindle, Peter .
CHEMICAL REVIEWS, 2010, 110 (06) :3767-3804
[8]   A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders [J].
Chung, C. K. ;
Fung, P. K. ;
Hong, Y. Z. ;
Ju, M. S. ;
Lin, C. C. K. ;
Wu, T. C. .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 117 (02) :367-375
[9]   Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel [J].
Fukushima, T ;
Asaka, K ;
Kosaka, A ;
Aida, T .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (16) :2410-2413
[10]   Recent advances in ionic polymer-metal composite actuators and their modeling and applications [J].
Jo, Choonghee ;
Pugal, David ;
Oh, Il-Kwon ;
Kim, Kwang J. ;
Asaka, Kinji .
PROGRESS IN POLYMER SCIENCE, 2013, 38 (07) :1037-1066