Interlaced optical force-fluorescence measurements for single molecule biophysics

被引:95
作者
Brau, Ricardo R.
Tarsa, Peter B.
Ferrer, Jorge M.
Lee, Peter
Lang, Matthew J.
机构
[1] MIT, Biol Engn Div, Cambridge, MA 02139 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1529/biophysj.106.082602
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Combining optical tweezers with single molecule fluorescence offers a powerful technique to study the biophysical properties of single proteins and molecules. However, such integration into a combined, coincident arrangement has been severely limited by the dramatic reduction in fluorescence longevity of common dyes under simultaneous exposure to trapping and fluorescence excitation beams. We present a novel approach to overcome this problem by alternately modulating the optical trap and excitation beams to prevent simultaneous exposure of the fluorescent dye. We demonstrate the dramatic reduction of trap-induced photobleaching effects on the common single molecule fluorescence dye Cy3, which is highly susceptible to this destructive pathway. The extension in characteristic fluorophore longevity, a 20-fold improvement when compared to simultaneous exposure to both beams, prolongs the fluorescence emission to several tens of seconds in a combined, coincident arrangement. Furthermore, we show that this scheme, interlaced optical force-fluorescence, does not compromise the trap stiffness or single molecule fluorescence sensitivity at sufficiently high modulation frequencies. Such improvement permits the simultaneous measurement of the mechanical state of a system with optical tweezers and the localization of molecular changes with single molecule fluorescence, as demonstrated by mechanically unzipping a 15-basepair DNA segment labeled with Cy3.
引用
收藏
页码:1069 / 1077
页数:9
相关论文
共 52 条
[1]   Kinesin moves by an asymmetric hand-over-hand mechanism [J].
Asbury, CL ;
Fehr, AN ;
Block, SM .
SCIENCE, 2003, 302 (5653) :2130-2134
[2]   Probing the kinesin reaction cycle with a 2D optical force clamp [J].
Block, SM ;
Asbury, CL ;
Shaevitz, JW ;
Lang, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (05) :2351-2356
[3]   Ten years of tension: single-molecule DNA mechanics [J].
Bustamante, C ;
Bryant, Z ;
Smith, SB .
NATURE, 2003, 421 (6921) :423-427
[4]   FRET detection of cellular α4-integrin conformational activation [J].
Chigaev, A ;
Buranda, T ;
Dwyer, DC ;
Prossnitz, ER ;
Sklar, LA .
BIOPHYSICAL JOURNAL, 2003, 85 (06) :3951-3962
[5]   Dynamic holographic optical tweezers [J].
Curtis, JE ;
Koss, BA ;
Grier, DG .
OPTICS COMMUNICATIONS, 2002, 207 (1-6) :169-175
[6]   The relationship between force and focal complex development [J].
Galbraith, CG ;
Yamada, KM ;
Sheetz, MP .
JOURNAL OF CELL BIOLOGY, 2002, 159 (04) :695-705
[7]  
Gittes F, 1998, BIOPHYS J, V74, pA183
[8]   Single-molecule high-resolution imaging with photobleaching [J].
Gordon, MP ;
Ha, T ;
Selvin, PR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) :6462-6465
[9]   Passive all-optical force clamp for high-resolution laser trapping [J].
Greenleaf, WJ ;
Woodside, MT ;
Abbondanzieri, EA ;
Block, SM .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)
[10]   Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase [J].
Ha, T ;
Rasnik, I ;
Cheng, W ;
Babcock, HP ;
Gauss, GH ;
Lohman, TM ;
Chu, S .
NATURE, 2002, 419 (6907) :638-641