Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice

被引:154
作者
Liu, Wenzhen [1 ]
Wu, Chao [1 ]
Fu, Yaping [1 ]
Hu, Guocheng [1 ]
Si, Huamin [1 ]
Zhu, Li [1 ]
Luan, Weijiang [1 ]
He, Zhengquan [1 ,2 ]
Sun, Zongxiu [1 ]
机构
[1] China Natl Rice Res Inst, State Key Lab Rice Biol, Hangzhou 310006, Zhejiang, Peoples R China
[2] China Three Gorges Univ, Biotechnol Res Ctr, Yichang 443002, Hubei, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
HTD2; High tillering; Dwarf; Map-based cloning; T-DNA; Rice (Oryza sativa L.); AUXIN BIOSYNTHESIS; ARABIDOPSIS; PETUNIA; MUTANT; ACTS; INHIBITION; ORTHOLOG; GROWTH; MAX1; RMS1;
D O I
10.1007/s00425-009-0975-6
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Tiller number is highly regulated by controlling the formation of tiller bud and its subsequent outgrowth in response to endogenous and environmental signals. Here, we identified a rice mutant htd2 from one of the 15,000 transgenic rice lines, which is characterized by a high tillering and dwarf phenotype. Phenotypic analysis of the mutant showed that the mutation did not affect formation of tiller bud, but promoted the subsequent outgrowth of tiller bud. To isolate the htd2 gene, a map-based cloning strategy was employed and 17 new insertions-deletions (InDels) markers were developed. A high-resolution physical map of the chromosomal region around the htd2 gene was made using the F-2 and F-3 population. Finally, the gene was mapped in 12.8 kb region between marker HT41 and marker HT52 within the BAC clone OSJNBa0009J13. Cloning and sequencing of the target region from the mutant showed that the T-DNA insertion caused a 463 bp deletion between the promoter and first exon of an esterase/lipase/thioesterase family gene in the 12.8 kb region. Furthermore, transgenic rice with reduced expression level of the gene exhibited an enhanced tillering and dwarf phenotype. Accordingly, the esterase/lipase/thioesterase family gene (TIGR locus Os03g10620) was identified as the HTD2 gene. HTD2 transcripts were expressed mainly in leaf. Loss of function of HTD2 resulted in a significantly increased expression of HTD1, D10 and D3, which were involved in the strigolactone biosynthetic pathway. The results suggest that the HTD2 gene could negatively regulate tiller bud outgrowth by the strigolactone pathway.
引用
收藏
页码:649 / 658
页数:10
相关论文
共 42 条
[1]   DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice [J].
Arite, Tomotsugu ;
Iwata, Hirotaka ;
Ohshima, Kenji ;
Maekawa, Masahiko ;
Nakajima, Masatoshi ;
Kojima, Mikiko ;
Sakakibara, Hitoshi ;
Kyozuka, Junko .
PLANT JOURNAL, 2007, 51 (06) :1019-1029
[2]   The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport [J].
Bennett, T ;
Sieberer, T ;
Willett, B ;
Booker, J ;
Luschnig, C ;
Leyser, O .
CURRENT BIOLOGY, 2006, 16 (06) :553-563
[3]   Axillary bud outgrowth: sending a message [J].
Beveridge, CA .
CURRENT OPINION IN PLANT BIOLOGY, 2006, 9 (01) :35-40
[4]   The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s) [J].
Beveridge, CA ;
Symons, GM ;
Murfet, IC ;
Ross, JJ ;
Rameau, C .
PLANT PHYSIOLOGY, 1997, 115 (03) :1251-1258
[5]   Long-distance signalling and a mutational analysis of branching in pea [J].
Beveridge, CA .
PLANT GROWTH REGULATION, 2000, 32 (2-3) :193-203
[6]   MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone [J].
Booker, J ;
Sieberer, T ;
Wright, W ;
Williamson, L ;
Willett, B ;
Stirnberg, P ;
Turnbull, C ;
Srinivasan, M ;
Goddard, P ;
Leyser, O .
DEVELOPMENTAL CELL, 2005, 8 (03) :443-449
[7]   MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule [J].
Booker, J ;
Auldridge, M ;
Wills, S ;
McCarty, D ;
Klee, H ;
Leyser, O .
CURRENT BIOLOGY, 2004, 14 (14) :1232-1238
[8]   Catalytic function of an α/β hydrolase is required for energy stress activation of the σB transcription factor in Bacillus subtilis [J].
Brody, MS ;
Vijay, K ;
Price, CW .
JOURNAL OF BACTERIOLOGY, 2001, 183 (21) :6422-6428
[9]   Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis [J].
Cheng, Youfa ;
Dai, Xinhua ;
Zhao, Yunde .
GENES & DEVELOPMENT, 2006, 20 (13) :1790-1799
[10]   Predicting subcellular localization of proteins based on their N-terminal amino acid sequence [J].
Emanuelsson, O ;
Nielsen, H ;
Brunak, S ;
von Heijne, G .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (04) :1005-1016