Dynamics of chromophore binding to Lhc proteins in vivo and in vitro during operation of the xanthophyll cycle

被引:88
作者
Morosinotto, T [1 ]
Baronio, R [1 ]
Bassi, R [1 ]
机构
[1] Univ Verona, Dipartimento Sci & Tecnol, I-37134 Verona, Italy
关键词
D O I
10.1074/jbc.M205339200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Three plant xanthophylls are components of the xanthophyll cycle in which, upon exposure of leaves to high light, the enzyme violaxanthin de-epoxidase (VDE) transforms violaxanthin into zeaxanthin via the intermediate antheraxanthin. Previous work (1) showed that xanthophylls are bound to Lhc proteins and that substitution of violaxanthin with zeaxanthin induces conformational changes and fluorescence quenching by thermal dissipation. We have analyzed the efficiency. of different Lhc proteins to exchange violaxanthin with zeaxanthin both in vivo and in vitro. Light stress of Zea mays leaves activates VDE, and the newly formed zeaxanthin is found primarily in CP26 and CP24, whereas other Lhc proteins show a lower exchange capacity. The de-epoxidation system has been reconstituted in vitro by using recombinant Lhc proteins, recombinant VDE, and monogalactosyl diacylglycerol (MGDG) to determine the intrinsic capacity for violaxanthin-to-zeaxanthin exchange of individual Lhc gene products. Again, CP26 was the most efficient in xanthophyll exchange. Biochemical and spectroscopic analysis of individual Lhc proteins after de-epoxidation in vitro showed that xanthophyll exchange occurs at the L2-binding site. Xanthophyll exchange depends on low pH, implying that access to the binding site is controlled by a conformational change via lumenal pH. These findings suggest that the xanthophyll cycle participates in a signal transduction system acting in the modulation of light harvesting versus thermal dissipation in the antenna system of higher plants.
引用
收藏
页码:36913 / 36920
页数:8
相关论文
共 52 条
[1]  
BASSI R, 1987, J BIOL CHEM, V262, P13333
[2]   Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites [J].
Bassi, R ;
Croce, R ;
Cugini, D ;
Sandonà, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (18) :10056-10061
[3]   CAROTENOID-BINDING PROTEINS OF PHOTOSYSTEM-II [J].
BASSI, R ;
PINEAU, B ;
DAINESE, P ;
MARQUARDT, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 212 (02) :297-303
[4]   A POSTTRANSLATIONAL MODIFICATION OF THE PHOTOSYSTEM-II SUBUNIT CP29 PROTECTS MAIZE FROM COLD STRESS [J].
BERGANTINO, E ;
DAINESE, P ;
CEROVIC, Z ;
SECHI, S ;
BASSI, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (15) :8474-8481
[5]   The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting [J].
Caffarri, S ;
Croce, R ;
Breton, J ;
Bassi, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (38) :35924-35933
[6]  
CAFFARRI S, 2001, PS2001 P 12 INT C PH, pS31
[7]   Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of photosystem II [J].
Connelly, JP ;
Muller, MG ;
Bassi, R ;
Croce, R ;
Holzwarth, AR .
BIOCHEMISTRY, 1997, 36 (02) :281-287
[8]   Time-resolved fluorescence analysis of the recombinant photosystem II antenna complex CP29 -: Effects of zeaxanthin, pH and phosphorylation [J].
Crimi, M ;
Dorra, D ;
Bösinger, CS ;
Giuffra, E ;
Holzwarth, AR ;
Bassi, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (02) :260-267
[9]   Carotenoid-binding sites of the major light-harvesting complex II of higher plants [J].
Croce, R ;
Weiss, S ;
Bassi, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (42) :29613-29623
[10]   Conformational changes induced by phosphorylation in the CP29 subunit of photosystem II [J].
Croce, R ;
Breton, J ;
Bassi, R .
BIOCHEMISTRY, 1996, 35 (34) :11142-11148