Kinking occurs during molecular dynamics simulations of small DNA minicircles

被引:154
作者
Lankas, Filip
Lavery, Richard
Maddocks, John H. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math B, Lab COmputat & Visualizat Math & Mech, CH-1015 Lausanne, Switzerland
[2] Inst Biol Physicochim, CNRS, UPR 9080, Lab Biochim Theor, F-75005 Paris, France
关键词
D O I
10.1016/j.str.2006.08.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent experiments on minicircle formation suggest that a conformational mechanism other than smooth deformation may be playing a role in enhancing DNA flexibility. Both local base unpairing and kink formation have been suggested as possible explanations. Although kinks within isolated DNA were proposed 30 years ago, they have, until now, only been observed within DNA complexed with proteins. In order to test how DNA behaves in the strong bending regime, we have carried out molecular dynamics simulations of a 94 base pair minicircle in explicit solvent with two different linking numbers, corresponding to a torsionally relaxed state and a positively supercoiled state. The simulations suggest that sharp kinks can indeed arise in small minicircles. The relaxed minicircle is generally associated with a single kink, while two kinks occur with the supercoiled state. No evidence is seen of base unpaired regions.
引用
收藏
页码:1527 / 1534
页数:8
相关论文
共 34 条
[1]   Stretched and overwound DNA forms a Pauling-like structure with exposed bases [J].
Allemand, JF ;
Bensimon, D ;
Lavery, R ;
Croquette, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (24) :14152-14157
[2]   Bacterial repression loops require enhanced DNA flexibility [J].
Becker, NA ;
Kahn, JD ;
Maher, LJ .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 349 (04) :716-730
[3]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[4]   Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides.: I.: Research design and results on d(CpG) steps [J].
Beveridge, DL ;
Barreiro, G ;
Byun, KS ;
Case, DA ;
Cheatham, TE ;
Dixit, SB ;
Giudice, E ;
Lankas, F ;
Lavery, R ;
Maddocks, JH ;
Osman, R ;
Seibert, E ;
Sklenar, H ;
Stoll, G ;
Thayer, KM ;
Varnai, P ;
Young, MA .
BIOPHYSICAL JOURNAL, 2004, 87 (06) :3799-3813
[5]   Molecular dynamics simulations of a nucleosome and free DNA [J].
Bishop, TC .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2005, 22 (06) :673-685
[6]   ENTROPIC ELASTICITY OF LAMBDA-PHAGE DNA [J].
BUSTAMANTE, C ;
MARKO, JF ;
SIGGIA, ED ;
SMITH, S .
SCIENCE, 1994, 265 (5178) :1599-1600
[7]  
Case D.A., 2002, AMBER 7
[8]   DNA twisting flexibility and the formation of sharply looped protein-DNA complexes [J].
Cloutier, TE ;
Widom, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (10) :3645-3650
[9]   Spontaneous sharp bending of double-stranded DNA [J].
Cloutier, TE ;
Widom, J .
MOLECULAR CELL, 2004, 14 (03) :355-362
[10]   DNA: An extensible molecule [J].
Cluzel, P ;
Lebrun, A ;
Heller, C ;
Lavery, R ;
Viovy, JL ;
Chatenay, D ;
Caron, F .
SCIENCE, 1996, 271 (5250) :792-794