Large-Area and Flexible Lead-Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler

被引:212
作者
Jeong, Chang Kyu [1 ]
Park, Kwi-Il [1 ]
Ryu, Jungho [2 ]
Hwang, Geon-Tae [1 ]
Lee, Keon Jae [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
[2] Korea Inst Mat Sci, Funct Ceram Grp, Chang Won 642831, Gyeongnam, South Korea
基金
新加坡国家研究基金会;
关键词
nanocomposite generators; piezoelectric energy harvesting; potassium sodium niobate; alkaline niobate; copper nanorods; (K; NA)NBO3; THIN-FILMS; CARBON NANOTUBES; ELECTROMECHANICAL PROPERTIES; PIEZOELECTRIC NANOGENERATOR; NANOPARTICLES; COMPOSITES; CERAMICS;
D O I
10.1002/adfm.201303484
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The lead-free nanocomposite generator device for high-output energy harvesting using piezoelectric alkaline niobate-based particles (KNLN) and copper (Cu) nanorods filler is reported. To produce the piezoelectric nanocomposite (p-NC), lead-free KNLN particles synthesized using a solid-state method and the Cu nanorods are distributed in a polydimethylsiloxane (PDMS) matrix. The lead-free flexible nanocomposite generator (NCG) made by a simple spin-casting method successfully converts mechanical energy to electricity up to 12 V and 1.2 A. These are higher than previously reported outputs from other lead-free and composite-based nanogenerators. The harvested energy is utilized to directly turn on white light emitting diodes (LEDs) without external circuits and to operate a complex circuital liquid crystal display (LCD). A large-area NCG device (30 cm x 30 cm) is also fabricated using the bar-coating method to obtain maximum output up to 140 V and 8 A (approximate to 0.5 mW). This NCG technology has substantial advantages as a simple, cost-effective, scalable, and high-throughput approach for practical flexible electronics, bio-eco-compatible self-powered systems, and body sensor networks (BSN).
引用
收藏
页码:2620 / 2629
页数:10
相关论文
共 42 条
[1]   Interfacial polarization in piezoelectric fibre-polymer composites [J].
Arous, M. ;
Hammami, H. ;
Lagache, M. ;
Kallel, A. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2007, 353 (47-51) :4428-4431
[2]  
Berlincourt D.A., 1971, Ultrasonic Transducer Materials, P63, DOI [10.1007/978-1-4757-0468-6_2, DOI 10.1007/978-1-4757-0468-6_2]
[3]   All-Solution-Processed Flexible Thin Film Piezoelectric Nanogenerator [J].
Chung, Sung Yun ;
Kim, Sunyoung ;
Lee, Ju-Hyuck ;
Kim, Kyongjun ;
Kim, Sang-Woo ;
Kang, Chong-Yun ;
Yoon, Seok-Jin ;
Kim, Youn Sang .
ADVANCED MATERIALS, 2012, 24 (45) :6022-+
[4]   Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential [J].
Girifalco, LA ;
Hodak, M ;
Lee, RS .
PHYSICAL REVIEW B, 2000, 62 (19) :13104-13110
[5]   Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics [J].
Guo, YP ;
Kakimoto, K ;
Ohsato, H .
APPLIED PHYSICS LETTERS, 2004, 85 (18) :4121-4123
[6]   Study of the interfacial MWS relaxation by dielectric spectroscopy in unidirectional PZT fibres/epoxy resin composites [J].
Hammami, H. ;
Arous, M. ;
Lagache, M. ;
Kallel, A. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 430 (1-2) :1-8
[7]   van der Waals interaction in nanotube bundles:: Consequences on vibrational modes [J].
Henrard, L ;
Hernández, E ;
Bernier, P ;
Rubio, A .
PHYSICAL REVIEW B, 1999, 60 (12) :R8521-R8524
[8]   Realization of high-energy density polycrystalline piezoelectric ceramics [J].
Islam, RA ;
Priya, S .
APPLIED PHYSICS LETTERS, 2006, 88 (03) :1-3
[9]   Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors [J].
Jung, Jong Hoon ;
Chen, Chih-Yen ;
Yun, Byung Kil ;
Lee, Nuri ;
Zhou, Yusheng ;
Jo, William ;
Chou, Li-Jen ;
Wang, Zhong Lin .
NANOTECHNOLOGY, 2012, 23 (37)
[10]   Lead-Free NaNbO3 Nanowires for a High Output Piezoelectric Nanogenerator [J].
Jung, Jong Hoon ;
Lee, Minbaek ;
Hong, Jung-Il ;
Ding, Yong ;
Chen, Chih-Yen ;
Chou, Li-Jen ;
Wang, Zhong Lin .
ACS NANO, 2011, 5 (12) :10041-10046