Arginine/2,5-dihydroxybenzoic acid clusters: An experimental and computational study of the gas-phase and solid-state systems

被引:20
作者
Kinsel, GR
Zhao, QC
Narayanasamy, J
Yassin, F
Dias, HVR
Niesner, B
Prater, K
St Marie, C
Ly, L
Marynick, DS [1 ]
机构
[1] Univ Texas, Dept Chem & Biochem, Arlington, TX 76019 USA
[2] Texas Wesleyan Univ, Dept Chem, Ft Worth, TX 76019 USA
关键词
D O I
10.1021/jp031207s
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The 1:1 adduct of arginine with 2,5-dihydroxybenzoic acid (DHB) has been studied in the gas phase and in the solid state. Experimentally, the ionization energy (IE) of the 1:1 cluster was determined by wavelength-dependent laser ionization of clusters formed by seeding DHB and arginine into a supersonic jet expansion. Ionization laser power studies performed at several discrete wavelengths established the upper and lower limits for the 1: 1 cluster IE and dissociation energy. Subsequent one-color scanned-wavelength laser ionization studies allowed an experimental establishment of the 1:1 cluster IE of 7.193 eV. A combination of molecular dynamics/simulated annealing calculations on the 1:1 cluster followed by density functional theory geometry optimizations using reasonably large basis sets yielded 15 distinct minima on the potential energy surface, all within 5.2 kcal/mol in energy at the B3LYP/6-311++G(2df,2p)//B3LYP/6-31+G** level. The Boltzmann-averaged IE at the same level is 7.11-7.14 eV, in excellent agreement with experiment. Cocrystals of arginine and DHB have been grown, and the crystal structure has been solved. The dominant intermolecular interaction in the cocrystal is a double hydrogen bond (salt bridge) between the guanidinium group of arginine and the (deprotonated) carboxylate group of DHB. This is exactly the same interaction that is found in the lowest-energy structure of the gas-phase 1:1 adduct. The electronic structure of the solid-state cocrystal has been modeled using a cluster approach.
引用
收藏
页码:3153 / 3161
页数:9
相关论文
共 34 条
[1]   CONFORMATIONAL-ANALYSIS .130. MM2 - HYDROCARBON FORCE-FIELD UTILIZING V1 AND V2 TORSIONAL TERMS [J].
ALLINGER, NL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (25) :8127-8134
[2]  
[Anonymous], 1979, HDB CHEM PHYS
[3]   The different nature of bonding in Cu+-glycine and Cu2+-glycine [J].
Bertrán, J ;
Rodríguez-Santiago, L ;
Sodupe, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (12) :2310-2317
[4]   Is arginine zwitterionic or neutral in the gas phase? Results from IR cavity ringdown spectroscopy [J].
Chapo, CJ ;
Paul, JB ;
Provencal, RA ;
Roth, K ;
Saykally, RJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (49) :12956-12957
[5]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[6]   THE GLYCINE ZWITTERION DOES NOT EXIST IN THE GAS-PHASE - RESULTS FROM A DETAILED ABINITIO ELECTRONIC-STRUCTURE STUDY [J].
DING, YB ;
KROGHJESPERSEN, K .
CHEMICAL PHYSICS LETTERS, 1992, 199 (3-4) :261-266
[7]   SELF-CONSISTENT MOLECULAR-ORBITAL METHODS .9. EXTENDED GAUSSIAN-TYPE BASIS FOR MOLECULAR-ORBITAL STUDIES OF ORGANIC MOLECULES [J].
DITCHFIELD, R ;
HEHRE, WJ ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1971, 54 (02) :724-+
[8]  
Frisch M.J., 2016, Gaussian 16 Revision C. 01. 2016, V01
[9]  
Halgren TA, 1996, J COMPUT CHEM, V17, P490, DOI [10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO
[10]  
2-P, 10.1002/(SICI)1096-987X(199604)17:5/6<616::AID-JCC5>3.0.CO