Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode

被引:255
作者
Dees, Dennis W. [1 ]
Kawauchi, Shigehiro [2 ]
Abraham, Daniel P. [1 ]
Prakash, Jai [3 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[2] Toyota Cent Res & Dev Labs Inc, Battery Div, Aichi 4801192, Japan
[3] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA
关键词
Lithium-ion; Positive; GITT; Modeling; Battery; POSITIVE ELECTRODES; INSERTION CELL; IMPEDANCE; OPTIMIZATION; PERFORMANCE;
D O I
10.1016/j.jpowsour.2008.09.045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Galvanostatic Intermittent Titration Technique (GITT) experiments were conducted to determine the lithium diffusion coefficient of LiNi0.8Co0.15Al0.05O2, used as the active material in a lithium-ion battery Porous composite positive electrode. An electrochemical model, based on concentrated solution porous electrode theory, was developed to analyze the GITT experimental results and compare to the original GITT analytical theory. The GITT experimental studies on the oxide active material were conducted between 3.5 and 4.5 V vs. lithium, with the maximum lithium diffusion coefficient value being 10(-10) cm(2) s(-1) at 3.85 V. The lithium diffusion coefficient values obtained from this study agree favorably with the values obtained from an earlier electrochemical impedance spectroscopy study. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:263 / 268
页数:6
相关论文
共 22 条
[1]   Modeling the impedance versus voltage characteristics of LiNi0.8Co0.15Al0.05O2 [J].
Abraham, D. P. ;
Kawauchi, S. ;
Dees, D. W. .
ELECTROCHIMICA ACTA, 2008, 53 (05) :2121-2129
[2]   Performance degradation of high-power lithium-ion cells- Electrochemistry of harvested electrodes [J].
Abraham, D. P. ;
Knuth, J. L. ;
Dees, D. W. ;
Bloom, I. ;
Christophersen, J. P. .
JOURNAL OF POWER SOURCES, 2007, 170 (02) :465-475
[3]  
Abraham D. P., 2005, Report No. ANL-05/21
[4]   Microscopy and spectroscopy of lithium nickel oxide-based particles used in high power lithium-ion cells [J].
Abraham, DP ;
Twesten, RD ;
Balasubramanian, M ;
Kropf, J ;
Fischer, D ;
McBreen, J ;
Petrov, I ;
Amine, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) :A1450-A1456
[5]   Diagnosis of power fade mechanisms in high-power lithium-ion cells [J].
Abraham, DP ;
Liu, J ;
Chen, CH ;
Hyung, YE ;
Stoll, M ;
Elsen, N ;
MacLaren, S ;
Twesten, R ;
Haasch, R ;
Sammann, E ;
Petrov, I ;
Amine, K ;
Henriksen, G .
JOURNAL OF POWER SOURCES, 2003, 119 :511-516
[6]   Application of a lithium-tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells [J].
Abraham, DP ;
Poppen, SD ;
Jansen, AN ;
Liu, J ;
Dees, DW .
ELECTROCHIMICA ACTA, 2004, 49 (26) :4763-4775
[7]   Surface characterization of electrodes from high power lithium-ion batteries [J].
Andersson, AM ;
Abraham, DP ;
Haasch, R ;
MacLaren, S ;
Liu, J ;
Amine, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1358-A1369
[8]   Modeling a porous intercalation electrode with two characteristic particle sizes [J].
Darling, R ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (12) :4201-4208
[9]   Alternating current impedance electrochemical modeling of lithium-ion positive electrodes [J].
Dees, D ;
Gunen, E ;
Abraham, D ;
Jansen, A ;
Prakash, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (07) :A1409-A1417
[10]   Electrochemical modeling of lithium-ion positive electrodes during hybrid pulse power characterization tests [J].
Dees, Dennis ;
Gunen, Evren ;
Abraham, Daniel ;
Jansen, Andrew ;
Prakash, Jai .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (08) :A603-A613