Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides

被引:175
作者
Brown, David R. [1 ]
Day, Tristan [1 ]
Borup, Kasper A. [2 ]
Christensen, Sebastian [2 ]
Iversen, Bo B. [2 ]
Snyder, G. Jeffrey [1 ]
机构
[1] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA
[2] Aarhus Univ, Dept Chem & iNano, DK-8000 Aarhus, Denmark
来源
APL MATERIALS | 2013年 / 1卷 / 05期
关键词
SUPERIONIC CONDUCTORS; CUPROUS SELENIDE; X-RAY; CU2SE; THERMOPOWER; ENTROPY; POWER; HEAT; TRANSFORMATION; CONDUCTIVITY;
D O I
10.1063/1.4827595
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
While thermoelectric materials can be used for solid state cooling, waste heat recovery, and solar electricity generation, low values of the thermoelectric figure of merit, zT, have led to an efficiency too low for widespread use. Thermoelectric effects are characterized by the Seebeck coefficient or thermopower, which is related to the entropy associated with charge transport. For example, coupling spin entropy with the presence of charge carriers has enabled the enhancement of zT in cobalt oxides. We demonstrate that the coupling of a continuous phase transition to carrier transport in Cu2Se over a broad (360-410 K) temperature range results in a dramatic peak in thermopower, an increase in phonon and electron scattering, and a corresponding doubling of zT (to 0.7 at 406 K), and a similar but larger increase over a wider temperature range in the zT of Cu1.97Ag.03Se (almost 1.0 at 400 K). The use of structural entropy for enhanced thermopower could lead to new engineering approaches for thermoelectric materials with high zT and new green applications for thermoelectrics. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
引用
收藏
页数:10
相关论文
共 36 条
[1]   The ionic Seebeck effect and heat of cation transfer in Cu2-δSe superionic conductors [J].
Balapanov, M. Kh. ;
Zinnurov, I. B. ;
Akmanova, G. R. .
PHYSICS OF THE SOLID STATE, 2006, 48 (10) :1868-1871
[2]   Thermoelectric properties of Ag-doped Cu2Se and Cu2Te [J].
Ballikaya, Sedat ;
Chi, Hang ;
Salvador, James R. ;
Uher, Ctirad .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (40) :12478-12484
[3]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[4]   SUPERIONIC CONDUCTORS - TRANSITIONS, STRUCTURES, DYNAMICS [J].
BOYCE, JB ;
HUBERMAN, BA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 51 (04) :189-265
[5]   Chemical Stability of (Ag,Cu)2Se: a Historical Overview [J].
Brown, David R. ;
Day, Tristan ;
Caillat, Thierry ;
Snyder, G. Jeffrey .
JOURNAL OF ELECTRONIC MATERIALS, 2013, 42 (07) :2014-2019
[6]  
Bush G., 1959, Helvetica Physica Acta, V32, P567
[7]   THERMOPOWER IN CORRELATED HOPPING REGIME [J].
CHAIKIN, PM ;
BENI, G .
PHYSICAL REVIEW B, 1976, 13 (02) :647-651
[8]  
CHATOV VA, 1980, SOV PHYS SEMICOND+, V14, P474
[9]   Neutron scattering study of short-range correlations and ionic diffusion in copper selenide [J].
Danilkin, S. A. ;
Avdeev, M. ;
Sakuma, T. ;
Macquart, R. ;
Ling, C. D. ;
Rusina, M. ;
Izaola, Z. .
IONICS, 2011, 17 (01) :75-80
[10]  
ELAKKAD F, 1981, MATER RES BULL, V16, P535, DOI 10.1016/0025-5408(81)90119-7