The accuracy and the computational complexity of a multivariate binned kernel density estimator

被引:18
作者
Holmström, L [1 ]
机构
[1] Univ Helsinki, Rolf Nevanlinna Inst, Helsinki, Finland
[2] George Mason Univ, Ctr Computat Stat, Fairfax, VA 22030 USA
基金
美国国家科学基金会;
关键词
kernel density estimation; binning; estimation error; computational complexity;
D O I
10.1006/jmva.1999.1863
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The computational cost of multivariate kernel density estimation can be reduced by prebinning the data. The data are discretized to a grid and a weighted kernel estimator is computed. We report results on the accuracy of such a binned kernel estimator and discuss the computational complexity of the estimator as measured by its average number of nonzero terms. (C) 2000 Academic Press.
引用
收藏
页码:264 / 309
页数:46
相关论文
共 23 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
[Anonymous], 1971, FOURIER ANAL EUCLIDE
[3]  
[Anonymous], 1992, MULTIVARIATE DENSITY
[4]  
[Anonymous], 1964, Handbook of mathematical functions
[5]  
[Anonymous], REAL COMPLEX ANAL
[6]  
Bhattacharya RN., 1976, NORMAL APPROXIMATION
[7]  
BREUER K, 1990, THESIS FACHBEREICH S
[8]  
Davis P.J., 1967, NUMERICAL INTEGRATIO
[9]  
Devroye L., 1987, A course in density estimation
[10]  
Fan J., 1994, Journal of computational and graphical statistics, V3, P35, DOI 10.2307/1390794